Chứng minh \(\sqrt{a^{2} +b^{2} }\) ≥ \(\dfrac{a +b}{\sqrt{2}}\) với mọi a; b ≥ 0.
Câu 1: Rút gọn biểu thức
a) \(N=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
b) \(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
Câu 2:
a) Cho a > 0. Chứng minh: \(a+\dfrac{1}{a}\ge2\)
b) Cho \(a\ge0\) , \(b\ge0\) . Chứng minh: \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
c) Cho a, b > 0. Chứng minh: \(\sqrt{a}+\sqrt{b}\le\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)
d) Chứng minh: \(\dfrac{a^2+2}{\sqrt{a^2+1}}\ge2\) với mọi a
2, a, \(a+\dfrac{1}{a}\ge2\)
\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)
\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)
vậy...................
Câu 1:
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}=3\)
\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
2b)
Biến đổi tương đương:
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\) (1)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)
\(\Leftrightarrow2a+2b\ge a+2\sqrt{ab}+b\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng
=> (1) đúng
Dấu "=" xảy ra khi a = b.
2c)
Áp dụng BĐT Cauchy Shwarz dạng Engel, ta có:
\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}=\sqrt{a}+\sqrt{b}\) (đpcm)
Dấu "=" xảy ra khi a = b.
2d)
Áp dụng BĐT AM - GM, ta có:
\(\dfrac{a^2+2}{\sqrt{a^2+1}}=\dfrac{a^2+1}{\sqrt{a^2+1}}+\dfrac{1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\dfrac{1}{\sqrt{a^2+1}}\ge2\) (đpcm)
Dấu "=" xảy ra khi a = 0
chứng minh rằng \(\sqrt{a^2+b^2}\ge\dfrac{a+b}{\sqrt{2}}\)với mọi a;b lớn hơn hoặc bằng 0
\(\Leftrightarrow a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\)
\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Vì (a-b)2\(\ge\)0 luôn đúng nên \(\sqrt{a^2+b^2}\ge\dfrac{a+b}{\sqrt{2}}\)
Chứng minh các đẳng thức sau:
c) \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\) ( với a,b > 0 và a \(\ne\) b )
\(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}\left(a,b>0;a\ne b\right)\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ =\dfrac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ =\dfrac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
Tick plz
Ta có: \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}\)
\(=\dfrac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{4b+4\sqrt{ab}}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{4\sqrt{b}\left(\sqrt{b}+\sqrt{a}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{b}+\sqrt{a}\right)}\)
\(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
chứng minh bất phương trình:
a) \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)
b) \(\sqrt{a}+\sqrt{b}< hoặc=\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)
với a>0, b>0
a) \(\dfrac{a^2+3}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\ge2\sqrt{\sqrt{a^2+2}.\dfrac{1}{\sqrt{a^2+2}}}=2\)
Dấu = xảy ra khi \(\sqrt{a^2+2}=\dfrac{1}{\sqrt{a^2+2}}\Leftrightarrow a^2=-1\left(vn\right)\)
\(\Rightarrow\) Dấu "=" không xảy ra
Vậy \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)
b)Với x,y>0,ta cm bđt phụ sau:
\(x^3+y^3\ge xy\left(x+y\right)\) (1)
Thật vậy (1)\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\ge0\)
\(\Leftrightarrow\cdot\left(x+y\right)\left(x^2-2xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) có:
\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}=\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}.\sqrt{b}}\ge\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}=\sqrt{a}+\sqrt{b}\)
Dấu "=" xra khi a=b
Vậy...
Chứng minh :
a) \(\dfrac{3x}{2y}+\dfrac{3}{2}\sqrt{\dfrac{3}{5}}-\sqrt{\dfrac{3}{4}}=\dfrac{3\sqrt{x}}{2}.\left(\dfrac{\sqrt{x}}{y}+\sqrt{\dfrac{3}{5x}}-\sqrt{\dfrac{1}{3}}\right)\)
b)\(ab.\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\) , với a ; b > 0
c) \(\left(\dfrac{3}{a}\sqrt{\dfrac{a^3}{b}}-\dfrac{1}{2}\sqrt{\dfrac{4}{ab}}-2\sqrt{\dfrac{b}{a}}\right):\sqrt{\dfrac{1}{ab}}=3a-2b-1\) với a, b >0
d)\(\left(\sqrt{\dfrac{16a}{b}}+3\sqrt{4ab}-a\sqrt{\dfrac{36b}{a}}+2\sqrt{ab}\right):\left(\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{a}{b}}\right)=2\) Với a, b >0
Mọi người giúp tớ với ạ !!!!!! Mình thật sự cần gấp vào ngày mai !!!!
b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)
\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)
\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)
\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)
\(VT=0=VP\)
Chứng minh:
\(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\) với a,b dương và \(a\ne b\)
\(VT=\dfrac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b}{2\left(a-b\right)}+\dfrac{2b}{a-b}\)
\(=\dfrac{4\sqrt{ab}}{2\left(a-b\right)}+\dfrac{2b}{a-b}=\dfrac{2b+2\sqrt{ab}}{a-b}\)
\(=\dfrac{2\sqrt{b}\left(\sqrt{b}+\sqrt{a}\right)}{a-b}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
Chứng minh đẳng thức:
a) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}=\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
( với a > hoặc bằng 0; b > hoặc bằng 0; a khác b )
a: \(=\dfrac{a+\sqrt{ab}-a+\sqrt{ab}-2b}{a-b}\)
\(=\dfrac{2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a-b}\)
\(=\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(Chứng\) \(minh\) \(\sqrt{\dfrac{a}{b+c}}\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{b+a}}>2\) \(\text{với a, b, c>0}\)
chứng minh
\(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
\(VT=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{2b}{a-b}\)
\(=\dfrac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{4b+4\sqrt{ab}}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)