Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TH Thanh Hồng Hải
Xem chi tiết
Kiều Vũ Linh
25 tháng 10 2023 lúc 20:53

a) A = 1 + 2 + 2² + ... + 2⁴¹

⇒ 2A = 2 + 2² + 2³ + ... + 2⁴²

⇒ A = 2A - A

= (2 + 2² + 2³ + ... + 2⁴²) - (1 + 2 + 2² + ... + 2⁴¹)

= 2⁴² - 1

b) A = 1 + 2 + 2² + ... + 2⁴¹

= (1 + 2 + 2²) + (2³ + 2⁴ + 2⁵) + ... + (2³⁹ + 2⁴⁰ + 2⁴¹)

= 7 + 2³.(1 + 2 + 2²) + ... + 2³⁹.(1 + 2 + 2²)

= 7 + 2³.7 + ... + 2³⁹.7

= 7.(1 + 2³ + ... + 2³⁹) ⋮ 7

Vậy A ⋮ 7

Ta có:

A = 1 + 2 + 2² + 2³ + ... + 2⁴⁰ + 2⁴¹

= (1 + 2) + (2² + 2³) + ... + (2⁴⁰ + 2⁴¹)

= 3 + 2².(1 + 2) + ... + 2⁴⁰.(1 + 2)

= 3 + 2².3 + ... + 2⁴⁰.3

= 3.(1 + 2² + ... + 2⁴⁰) ⋮ 3

Vậy A ⋮ 3

c) A = 1 + 2 + 2² + 2³ + ... + 2⁴⁰

= (1 + 2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶ + 2⁷) + ... + (2³⁸ + 2³⁹ + 2⁴⁰ + 2⁴¹)

= 15 + 2⁴.(1 + 2 + 2² + 2³) + ... + 2³⁸.(1 + 2 + 2² + 2³)

= 15 + 2⁴.15 + ... + 2³⁸.15

= 15.(1 + 2⁴ + ... + 2³⁸)

= 5.3.(1 + 2⁴ + ... + 2³⁸) ⋮ 5

Vậy A chia 5 dư 0

Trunghoc2010
Xem chi tiết
Lấp La Lấp Lánh
11 tháng 10 2021 lúc 13:48

a) \(A=1+2+2^2+2^3+...+2^{99}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)

b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)

\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)

\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5

c) \(A=1+2+2^2+...+2^{99}\)

\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1

=> A không chia hết cho 7

     

 

Nguyễn Linh Chi
Xem chi tiết
OH-YEAH^^
21 tháng 8 2021 lúc 8:23

b) A=2+22+23+...+220

A=(2+22)+(23+24)+...+(219+220)

A=3.2+3.23+...+3.219

A=3.(2+23+25+...+219)

⇒A⋮3

phần c) làm tương tự

Dương Công Phong
Xem chi tiết
Nguyễn Ngọc Anh Minh
27 tháng 10 2023 lúc 14:51

a/

\(a=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)

Ta thấy

\(2\left(1+2+2^2+2^3\right)=2.15=30\)

\(\Rightarrow a=30+2^4.30+...+2^{16}.30⋮10\)

b/

Gọi tổng của 5 số TN liên tiếp là

n+(n+1)+(n+2)+(n+3)+(n+4)=5n+10=5(n+2) chia hết cho 5

Trần Nguyễn Trang My
Xem chi tiết
HT.Phong (9A5)
10 tháng 11 2023 lúc 18:55

a) \(A=2+2^2+...+2^{2024}\)

\(2A=2^2+2^3+...+2^{2025}\)

\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)

\(A=2^{2025}-2\) 

b) \(2A+4=2n\)

\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)

\(\Rightarrow2^{2026}-4+4=2n\)

\(\Rightarrow2n=2^{2026}\)

\(\Rightarrow n=2^{2026}:2\)

\(\Rightarrow n=2^{2025}\) 

c) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)

d) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)

\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)

\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)

Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7

⇒ A : 7 dư 2 

Cao Gia Hưng
12 tháng 1 lúc 20:12

9

 

Phùng Thị Kiều Chinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 21:08

b: \(A=3+2^2\cdot3+...+2^{2020}\cdot3\)

\(=3\cdot\left(1+2^2+...+2^{2020}\right)⋮3\)

Đẹp Trai Nhất Việt Nam
Xem chi tiết
Nguyễn Thái Sơn
5 tháng 1 2017 lúc 20:42

nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!

Nguyễn Thị Hoàng Ánh
8 tháng 10 2017 lúc 21:15

xl mk thấy tên bn ghê wa

Lê Đức Tuệ
4 tháng 9 2021 lúc 11:15
Thằng xl nghe tên mà ức chế vãi
Khách vãng lai đã xóa
Nguyễn Linh Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 22:37

a: Ta có: \(A=2+2^2+2^3+...+2^{20}\)

\(=2\left(1+2+2^2+...+2^{19}\right)⋮2\)

b: Ta có: \(A=2+2^2+2^3+...+2^{20}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)

\(=3\cdot\left(2+2^3+...+2^{19}\right)⋮3\)

༺ミ𝒮σɱєσиє...彡༻
21 tháng 8 2021 lúc 22:39

c) tham khảo:

M = 2 + 22 + 23 + ... + 220
= ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 217 + 218 + 219 + 220 )
= 2 . ( 1 + 2 + 22 + 23 ) + 25 . ( 1 + 2 + 22 + 23 ) + ... + 217 . ( 1 + 2 + 22 + 23 )
= 2 . 15 + 25 . 15 + ... + 217 .15
= 15 . 2 ( 1 + 24 + ... + 216 )
= 3 . 5 . 2 ( 1 + 24 + ... + 216 ) \(⋮\) 5

Akai Haruma
21 tháng 8 2021 lúc 22:39

Lời giải:
a. 

$A=2(1+2^1+2^2+...+2^{19})\vdots 2$

b. 

$A=(2+2^2)+(2^3+2^4)+.....+(2^{19}+2^{20})$

$=2(1+2)+2^3(1+2)+....+2^{19}(1+2)$

$=2.3+2^3.3+...+2^{19}.3$

$=3(2+2^3+...+2^{19})\vdots 3$

c.

$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{17}+2^{18}+2^{19}+2^{20})$

$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{17}(1+2+2^2+2^3)$

$=2.15+2^5.15+....2^{17}.15$
$=15(2+2^5+...+2^{17})$
$=5.3.(2+2^5+...+2^{17})\vdots 5$

An Bùi
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 9 2021 lúc 9:24

Gọi 2 số chia 7 có dư là \(7k+a;7q+a\left(p,q,a\in N;a\le7\right)\)

Ta có \(7k+a-\left(7q+a\right)=7k-7q=7\left(k-q\right)⋮7\)

Vậy ...

Hermione Granger
24 tháng 9 2021 lúc 9:28

Gọi \(2\) số đề bài cho là \(7m+k\) và \(7.n+k\)

Hiệu của chúng là: \(\left(7.m+k\right)-\left(7.n+k\right)\)

\(=7.m+k-7.n-k\)

\(=7.m-7.n\)

\(7.\left(m-n\right)⋮7\)

Chứng tỏ nếu 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7

Gọi aa và bb là hai số có cùng số dư rr khi chia cho 77 (giả sử a≥b)a≥b)

Ta có a=7m+r,a=7m+r, b=7n+r(m,n∈N,b=7n+r(m,n∈N, 0≤r<7)0≤r<7)

Khi đó a−b=(7m+r)−(7n+r)a−b=(7m+r)−(7n+r)=7m−7n=7m−7n

Vì 7m7m chia hết cho 77 và 7n7n chia hết cho 77 nên 7m−7n7m−7n chia hết cho 7.7.

Hay a−ba−b chia hết cho 7.