Tìm phân thức A biết: x -y/x³+y³× A = x² -2xy+y²/x²-xy+y²; x không bằng +y ,- y
Bài 1: Phân tích đa thức sau :
a)2x(xy+y^2-3)
b)(x-y)(2x+y)
c)(x-2y)^2
d)(2x-y)(y+2x)
bài 2: Phân tích các đơn thức thành nhân tử
a)3x^2-3xy
b)x^2-4y^2
c)3x-3y+xy-y^2
d)x^2-1+2y-y^2
Bài 3: Tìm x biết:
a)3x^2-6x=0
b)Tìm x,y thuộc z biết: x^2+4y^2-2xy=4
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
Rút gọn phân thức a) 2x² - 2xy / x²+x-xy-y b) x²-y²+z²+2xy/ x²-y²+z²+2xz
a) \(\dfrac{2x^2-2xy}{x^2+x-xy-y}\) \(\left(x\ne y;x\ne-1\right)\)
\(=\dfrac{2x\left(x-y\right)}{x\left(x+1\right)-y\left(x+1\right)}\)
\(=\dfrac{2x\left(x-y\right)}{\left(x-y\right)\left(x+1\right)}\)
\(=\dfrac{2x}{x+1}\)
b) \(\dfrac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)
\(=\dfrac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)
\(=\dfrac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x-y+z\right)\left(x+y+z\right)}\)
\(=\dfrac{x+y-z}{x-y+z}\)
Bài 1: Phân tích đa thức sau thànBài 1: Phân tích đa thức sau thành nhân tử a) x 2 – xy + x – y b) x 2 + 5x + 6 c) 2xy - x 2 - y 2 +16h nhân tử a) x 2 – xy + x – y b) x 2 + 5x + 6 c) 2xy - x 2 - y 2 +16
a) \(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
b) \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+3\right)\left(x+2\right)\)
\(2xy-x^2-y^2+16\)
\(=16-\left(x-y\right)^2\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
Cho đa thức P= 5x^2y - 2xy^2 + xy - x + y - 2
a) Tìm đa thức R,biết rằng P + R = -xy × (x - y)
\(P+R=-xy\cdot(x-y)\\\Leftrightarrow R=-xy(x-y)-P\\\Leftrightarrow R=-x^2y+xy^2-(5x^2y-2xy^2+xy-x+y-2)\\\Leftrightarrow R=-x^2y+xy^2-5x^2y+2xy^2-xy+x-y+2\\\Leftrightarrow R=(-x^2y-5x^2y)+(xy^2+2xy^2)-xy+x-y+2\\\Leftrightarrow R=-6x^2y+3xy^2-xy+x-y+2\)
Ta có:
\(P+R=-xy\cdot\left(x-y\right)\)
\(\Leftrightarrow\left(5x^2y-2xy^2+xy-x+y-2\right)+R=-x^2y+xy^2\)
\(\Leftrightarrow R=-x^2y+xy^2-5x^2y+2xy^2+xy+x-y+2\)
\(\Leftrightarrow R=\left(-x^2y-5x^2y\right)+\left(xy^2+2xy^2\right)+xy+x-y+2\)
\(\Leftrightarrow R=-6x^2y+3xy^2+xy+x-y+2\)
1, Làm tính nhân : 3xy(x^2-2xy+5)
Phân tích đa thức thành nhân tử : x^2+2xy-25+y^2\
2.Tìm xy biết a) 4x^2+20x=0
b ) x(x+3)-3x-9=0
Bài 2:
a: =>4x(x+5)=0
=>x=0 hoặc x=-5
b: =>(x+3)(x-3)=0
=>x=-3 hoặc x=3
Tìm phân thức M biết:
\(\frac{x+y}{x-y}\cdot M=\frac{x^2+2xy+y^2}{x^2+xy+y^2}\)
\(\frac{x+y}{x-y}.M=\frac{x^2+2xy+y^2}{x^2+xy+y^2}\)
\(\Leftrightarrow M=\frac{x^2+2xy+y^2}{x^2+xy+y^2}.\frac{x+y}{x-y}\)
\(\Leftrightarrow M=\frac{\left(x+y\right)^3}{x^3-y^3}\)
\(\Leftrightarrow M=\frac{x^3+3x^2y+3xy^2+y^3}{x^3-y^3}\)
Sửa:
\(pt\Leftrightarrow M=\frac{x^2+2xy+y^2}{x^2+xy+y^2}.\frac{x-y}{x+y}\)
\(\Leftrightarrow M=\frac{\left(x+y\right)^2.\left(x-y\right)}{\left(x+y\right)\left(x^2+xy+y^2\right)}\)
\(\Leftrightarrow M=\frac{\left(x+y\right)\left(x-y\right)}{\left(x^2+xy+y^2\right)}\)
\(\Leftrightarrow M=\frac{x^2-y^2}{x^2+xy+y^2}\)
1. a Tìm đa thức M, biết: M+ (x2y- 2xy2+xy+1) = x2y + xy2-xy-1\
b. Tính giá trị của đa thức M, biết x=1, y=2
a.M=3xy2-2xy-2
b.Thay x=1,y=2 vào đa thức M ta được:
M=3.1.22-2.1.2-2=12-4-2=6
phân tích đa thức thành nhân tử a) x^3-x^2-y-xy^2+y^3 b) 3x+3y-x^2-2xy-y^2
phân tích đa thức thành nhân tử a) x^3-x^2-y-xy^2+y^3 b) 3x+3y-x^2-2xy-y^2
b: \(3x+3y-x^2-2xy-y^2\)
\(=3\left(x+y\right)-\left(x+y\right)^2\)
\(=\left(x+y\right)\left(3-x-y\right)\)