Tìm nϵN sao cho 5 . ( 3n-1)+3⋮(2n*-5)
Tìm n để : 3n+1/2n+3 là phân số tối giản (nϵN)
Tìm nϵN sao cho 12n-3⋮(3n-2)
Lời giải:
$12n-3\vdots 3n-2$
$\Rightarrow 4(3n-2)+5\vdots 3n-2$
$\Rightarrow 5\vdots 3n-2$
$\Rightarrow 3n-2\in\left\{1; -1;5;-5\right\}$
$\Rightarrow n\in\left\{1; \frac{1}{3}; \frac{7}{3}; -1\right\}$
Vì $n\in\mathbb{N}$ nên $n=1$
Ta có:
12n - 3 = 12n - 8 + 5 = 4(3n - 2) + 5
Để (12n - 3) ⋮ (3n - 2) thì 5 ⋮ (3n - 2)
⇒ 3n - 2 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ 3n ∈ {-3; 1; 3; 7}
⇒ n ∈ {-1; 1/3; 1; 7/3}
Mà n ∈ ℕ
⇒ n = 1
Tìm nϵN sao cho 15n-3⋮(3n-2)
Ta có:
15n - 3 = 15n - 10 + 7 = 5(3n - 2) + 7
Để (15n - 3) ⋮ (3n - 2) thì 7 ⋮ (3n - 2)
⇒ 3n - 2 ∈ Ư(7) = {-7; -1; 1; 7}
⇒ 3n ∈ {-5; 1; 3; 9}
⇒ n ∈ {-5/3; 1/3; 1; 3}
Mà n ∈ ℕ
⇒ n = 1; n = 3
Tìm nϵN sao cho ( 2n+8)⋮(2n+1)
2n + 8 ⋮ 2n + 1
⇒ 2n + 1 + 7 ⋮ 2n + 1
⇒ 2n + 1 chia hết cho 2n + 1 và 7 chia hết cho 2n + 1
⇒ 7 chia hết cho 2n + 1
⇒ \(2n+1\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
⇒ \(2n\in\left\{0;-2;6;-8\right\}\)
⇒ \(n\in\left\{0;-1;3;-4\right\}\)
Vậy: ...
Theo bài ra ta có:
2n + 8 chia hết cho 2n + 1
=> ( 2n + 1 ) + 7 chia hết cho 2n + 1
=> 7 chia hết cho 2n + 1
=> 2n + 1 thuộc { 1 ; 7 }
=> 2n thuộc { 0 ; 6 }
=> n thuộc { 0 ; 3 }
Tìm nϵN để :
\(n^2+3n+5:n+1\)
\(\Leftrightarrow n^2+n+2n+2+3⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;3\right\}\)
hay \(n\in\left\{0;2\right\}\)
$(n^2+3n+5)\vdots (n+1)$
$\to (n^2+n+2n+2+3)\vdots (n+1)$
$\to [n(n+1)+2(n+1)+3]\vdots (n+1)$
$\to n+1\in Ư(3)=\left\{-3;-1;1;3\right\}$
$\to n\in \left\{-4;-2;0;2\right\}$
Mà $n\in \mathbb{N}$
$\to n\in \left\{0;2\right\}$
Cho nϵN* và
\(P=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{4}}+\dfrac{1}{\sqrt{4}-\sqrt{5}}-...+\dfrac{1}{\sqrt{2n}-\sqrt{2n+1}}\)
Hỏi P có là số hữu tỉ hay không? Vì sao?
\(P=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{4}}+\dfrac{1}{\sqrt{4}-\sqrt{5}}-...+\dfrac{1}{\sqrt{2n}-\sqrt{2n+1}}\)
\(P=\dfrac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}-\dfrac{\sqrt{3}+\sqrt{4}}{\left(\sqrt{3}+\sqrt{4}\right)\left(\sqrt{3}-\sqrt{4}\right)}+...+\dfrac{\sqrt{2n}+\sqrt{2n+1}}{\left(\sqrt{2n}-\sqrt{2n+1}\right)\left(\sqrt{2n}+\sqrt{2n+1}\right)}\)
\(P=\dfrac{\sqrt{2}+\sqrt{3}}{2-3}-\dfrac{\sqrt{3}+\sqrt{4}}{3-4}+\dfrac{\sqrt{4}+\sqrt{5}}{4-5}-...+\dfrac{\sqrt{2n}+\sqrt{2n+1}}{2n-2n-1}\)
\(P=\dfrac{\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-...+\sqrt{2n}+\sqrt{2n+1}}{-1}\)
\(P=\dfrac{\sqrt{2}+\sqrt{2n+1}}{-1}\)
\(P=-\left(\sqrt{2}+\sqrt{2n+1}\right)\)
Mà: \(\sqrt{2}\) là số vô tỉ nên: \(-\left(\sqrt{2}+\sqrt{2n+1}\right)\) là số vô tỉ với mọi n
\(\Rightarrow\) P là số vô tỉ không phải là số hữu tỉ
Tìm số tự nhiên n sao cho:
1) 3n chia hết cho 2n-5
2) 4n+3 chia hết cho 2n+6
3) 2n+6 chia hết cho 3n+1
(Tích tất cả các bình luận đúng)
1) 3n ⋮ 2n - 5
=> 2(3n) - 3(2n - 5) ⋮ 2n - 5
=> 6n - 6n + 15 ⋮ 2n - 5
=> 15 ⋮ 2n - 5
=> 2n-5 ϵ Ư(15)
Ư(15) = {1;-1;3;-3;5;-5;15;-15}
=> n={3;2;4 ;1;5;0;10;-5}
1) 3n ⋮ 2n - 5
=> 2(3n) - 3(2n - 5) ⋮ 2n - 5
=> 6n - 6n + 15 ⋮ 2n - 5
=> 15 ⋮ 2n - 5
=> 2n-5 ϵ Ư(15)
Ư(15) = {1;-1;3;-3;5;-5;15;-15}
=> n={3;2;4 ;1;5;0;10;-5}
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
chứng minh rằng 2n+5 và 3n+7 (nϵN)là hai số nguyên tố cùng nhau
gọi ƯC(2n+5 và 3n+7) = d
3(2n+5) , 2(3n+7) chia hết cho d
-> [3(2n+5) - 2(3n+7)] chia hết cho d
-> 1 chia hết cho d
d = 1 -> 2n +5 và 3n+7 nguyên tố cùng nhau