a, b, c \(\ge\)0; \(\frac{a}{1+bc}+\frac{b}{1+ac}+\frac{c}{1+ab}=3\). CM: \(\frac{a}{1+a+bc}+\frac{b}{1+b+ac}+\frac{c}{1+c+ab}\ge\frac{3}{4}\)
1, cho a,b,c ≥0 chứng minh các bất đẳng thức sau:
a, (a+b)(b+c)(c+a) ≥ 8abc
b, \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c,vớia+b+c>0\)
c, \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}vớia,b,c>0\)
hơn 1 năm rồi không ai làm :'(
a) Áp dụng bđt Cauchy ta có :
\(a+b\ge2\sqrt{ab}\)(1)
\(b+c\ge2\sqrt{bc}\)(2)
\(c+a\ge2\sqrt{ca}\)(3)
Nhân (1), (2), (3) theo vế
=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{a^2b^2c^2}=8\sqrt{\left(abc\right)^2}=8\left|abc\right|=8abc\)
=> đpcm
Dấu "=" xảy ra <=> a=b=c
b) Áp dụng bđt AM-GM ta có :
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2\sqrt{c^2}=2c\)
TT : \(\frac{ca}{b}+\frac{ab}{c}\ge2a\); \(\frac{bc}{a}+\frac{ab}{c}\ge2b\)
Cộng vế với vế
=> \(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
=> \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)( đpcm )
Dấu "=" xảy ra <=> a=b=c
Cho a,b,c là các số thực dương thỏa mac: 1≥c≥b≥a≥0.
CMR: 2/3≥a/(a+1)+b/(b+1)+c/(c+1 )
Chứng minh bất đẳng thức sau với a,b,c\(\ge\) 0
a)a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)\(\ge\) 0
b) a6+b6+c6\(\ge\) a5b+b5 c+c5a(a,b,c\(\ge\) 0)
a)Sắp xếp:a\(\ge\) b\(\ge\) c\(\ge\) 0
a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)
=a(a-b)[(a-b)=(b-c)]-b(a-b)(b-c)=c(a-c)(b-c)
=a(a-b)2+a(a-b)(b-c)-b(a-b)(b-c)+c(a-c)(b-c)
=a(a-b)2+(b-c)(a-b)2+c(a-c)(b-c)\(\ge\) 0
a, Cho a \(\ge\)0 ; b \(\ge\)0 . Chứng minh bất đẳng thức Cauchy \(\frac{a+b}{2}\ge\sqrt{ab}\)
b, Cho a,b,c > 0 chứng minh rằng \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
c, Cho a,b > 0 và 3a + 5b =12 . Tìm giá trị lớn nhất của tích P=ab
a) Giả sử:
\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow\frac{a^2+2ab+b^2}{4}\ge ab\)
\(\Rightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Rightarrow\frac{\left(a-b\right)^2}{4}\ge0\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng )
=> đpcm
b, Bất đẳng thức Cauchy cho các cặp số dương \(\frac{bc}{a}\)và \(\frac{ca}{b};\frac{bc}{a}\)và \(\frac{ab}{c};\frac{ca}{b}\)và \(\frac{ab}{c}\)
Ta lần lượt có : \(\frac{bc}{a}+\frac{ca}{b}\ge\sqrt[2]{\frac{bc}{a}.\frac{ca}{b}}=2c;\frac{bc}{a}+\frac{ab}{c}\ge\sqrt[2]{\frac{bc}{a}.\frac{ab}{c}}=2b;\frac{ca}{b}+\frac{ab}{c}\ge\sqrt[2]{\frac{ca}{b}.\frac{ab}{c}}\)
Cộng từng vế ta đc bất đẳng thức cần chứng minh . Dấu ''='' xảy ra khi \(a=b=c\)
c, Với các số dương \(3a\) và \(5b\), Theo bất đẳng thức Cauchy ta có \(\frac{3a+5b}{2}\ge\sqrt{3a.5b}\)
\(\Leftrightarrow\left(3a+5b\right)^2\ge4.15P\)( Vì \(P=a.b\))
\(\Leftrightarrow12^2\ge60P\)\(\Leftrightarrow P\le\frac{12}{5}\Rightarrow maxP=\frac{12}{5}\)
Dấu ''='' xảy ra khi \(3a=5b=12:2\)
\(\Leftrightarrow a=2;b=\frac{6}{5}\)
chứng minh bất đẳng thức
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\)với a ≥ b ≥ c > 0
Ta có: BĐT\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{1}{2}+\dfrac{b}{b+c}-\dfrac{1}{2}+\dfrac{c}{c+a}-\dfrac{1}{2}\ge0\)
\(\Leftrightarrow\dfrac{2a-\left(a+b\right)}{2\left(a+b\right)}+\dfrac{2b-\left(b+c\right)}{2\left(b+c\right)}+\dfrac{2c-\left(c+a\right)}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-a+a-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+\dfrac{a-c}{2}\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}+\dfrac{a-c}{\left(b+c\right)\left(c+a\right)}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) (đúng)
Vậy BĐT luôn đúng với \(a\ge b\ge c>0\)
Cho 4 số thực a, b, c thỏa mãn a ≥ b ≥ c ≥ d ≥0. Chứng minh
a) a2 - b2 +c2 ≥ (a-b+c)2
b) a2 - b2 +c2 -d2 ≥ (a-b+c-d)2
a/ \(\Leftrightarrow a^2-b^2+c^2\ge a^2+b^2+c^2-2ab+2ac-2bc\)
\(\Leftrightarrow b^2-ab+ac-bc\le0\)
\(\Leftrightarrow b\left(b-a\right)-c\left(b-a\right)\le0\)
\(\Leftrightarrow\left(b-c\right)\left(b-a\right)\le0\) (luôn đúng do \(a\ge b\ge c\))
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}a=b\\b=c\end{matrix}\right.\)
b/ Tương tự như câu trên:
\(a^2-b^2+c^2-d^2\ge\left(a-b+c\right)^2-d^2=\left(a-b+c-d\right)\left(a-b+c+d\right)\ge\left(a-b+c-d\right)^2\)
4.
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy : .
b) Cho a, b, c > 0. Chứng minh rằng :
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
a)\(\dfrac{\left(a+b\right)^2}{4}\ge ab\)\(\Leftrightarrow\dfrac{a^2+ab+b^2}{4}\ge0\)\(\Leftrightarrow\dfrac{\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}}{4}\ge0\left(đpcm\right)\)
Vậy \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
b) Áp dụng Cauchy, ta có:
\(\dfrac{bc}{a}+\dfrac{ca}{b}\ge2\sqrt{\dfrac{bc}{a}.\dfrac{ca}{b}}=2c\)
Tương tự: \(\dfrac{ca}{b}+\dfrac{ab}{c}\ge2a\)
\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2b\)
Cộng vế theo vế các BĐT vừa chứng minh rồi rút gọn ta được đpcm.
c) ta có \(3a+5b=12\Rightarrow a=\dfrac{12-5b}{3}=4-\dfrac{5b}{3}\)
\(\Rightarrow P=ab=\left(4-\dfrac{5b}{3}\right)b=4b-\dfrac{5b^2}{3}\)
\(\Rightarrow15P=60b-25b^2=36-\left(25b^2-60b+36\right)=36-\left(5b-6\right)^2\)
\(\Rightarrow15P\le36\Rightarrow P\le\dfrac{36}{15}=\dfrac{12}{5}\) Vậy GTLN của \(P=\dfrac{12}{5}\) tại \(a=2;b=\dfrac{6}{5}\)
Chứng minh bất đẳng thức : \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\) vs \(a\ge b\ge c>0\)
Ta có: \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{a}{2b}+\dfrac{b}{2c}+\dfrac{c}{2a}=\dfrac{1}{2}\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\ge\dfrac{1}{2}.3=\dfrac{3}{2}\) ( BĐT AM - GM )
Dấu " = " khi a = b = c
\(\Rightarrowđpcm\)
BĐT\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{1}{2}+\dfrac{b}{b+c}-\dfrac{1}{2}+\dfrac{c}{c+a}-\dfrac{1}{2}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-a+a-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+\dfrac{a-c}{2}\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\cdot\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}+\dfrac{a-c}{2}\cdot\dfrac{a-b}{\left(b+c\right)\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}+\dfrac{a-c}{\left(b+c\right)\left(c+a\right)}\right)\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\cdot\dfrac{\left(c-a\right)\left(c+a\right)+\left(a-c\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)(luôn đúng)
\(\Rightarrowđpcm\)
chứng minh bất đẳng thức:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\) với\(a\ge b\ge c>0\)
tham khảo tại đây-_-
Câu hỏi của Nguyễn Thị Bình Yên - Toán lớp 8 | Học trực tuyến
Bài 1: Cho a,b,c \(\ge\)0. CMR: \(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\ge6\)
Bài 2: Cho a,b,c \(\ge\)0. CMR: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Bài 1: Áp dụng BĐT Cauchy cho 3 số dương:
\(VT\ge3\sqrt[3]{\frac{\left(b+c\right)\left(c+a\right)\left(a+b\right)}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=6\) (đpcm)
Giải phần dấu "=" ra ta được a = b =c
Bài 2: Đặt \(a+b=x;b+c=y;c+a=z\)
Suy ra \(a=\frac{x-y+z}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)
Suy ra cần chứng minh \(\frac{x-y+z}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\ge3\)
\(\Leftrightarrow\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\ge6\)
Bài toán đúng theo kết quả câu 1.