Cho a, b, c > 0. CM:
a)\(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{3}{4}\)
b)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{b+c}{a^2+bc}+\frac{c+a}{b^2+ac}+\frac{a+b}{c^2+ab}\)
c)\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Làm được câu nào thì làm giúp mình câu đó nhé!
cho ba số dương a b c thỏa mãn a+b+c <=3 cmr
\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge\frac{3}{2}\)
Bài 2 : cho a, b, c> 0
1 ) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+c}\ge\frac{a+b+c}{2}\)
2) \(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
3 ) \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b+c}{2}\)
4) \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)
1. cho a,b,c > 0.CMR :\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)\(c\)
2. cho a,b,c là 3 cạnh của tam giác cmr: \(1< \frac{a}{bc}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
cho a, b, c>0. CMR a\(\frac{a^3}{b}\ge a^2+ab-b^2\)
CM \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Cho a, b, c là độ dài 3 cạnh của tam giác CM \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a,b,c>0.
CM: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ac\)
Bài 1 :
Cho a, b, c là 3 cạnh của một tam giác. Chứng minh rằng :
\(\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ac}{a+c-b}\ge a+b+c\)
Bài 2 :
Cho a, b, c khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn : \(Q=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Bài 3 :
Chứng minh rằng với mọi a, b, c khác 0 ta luôn có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Chứng minh các bất đẳng thức :
a) \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ac\)( với \(a,b,c>0\))
b) \(a+b+c\ge9\)biết \(a,b,c>0\)và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Chứng minh bất đẳng thức
\(1,\frac{a}{b}+\frac{b}{a}\ge2\)
\(2,a^2+b^2+c^2\ge ab+bc+ca\)
\(3,\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(4,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{ab}\left(a,b>0\right)\)
\(5, 3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)