Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
piojoi
Xem chi tiết
Vũ Cao Thành
Xem chi tiết
KCLH Kedokatoji
Xem chi tiết
Nguyen Thi Bich Huong
Xem chi tiết
Trần Minh Hoàng
6 tháng 3 2021 lúc 9:29

a) Đặt \(d=\left(a_1,a_2,...,a_n\right)\Rightarrow\left\{{}\begin{matrix}a_1=dx_1\\a_2=dx_2\\...\\a_n=dx_n\end{matrix}\right.\) (với \(\left(x_1,x_2,...,x_n\right)=1\)).

Ta có \(A_i=\dfrac{A}{a_i}=\dfrac{d^nx_1x_2...x_n}{dx_i}=d^{n-1}\dfrac{x_1x_2...x_n}{x_i}=d^{n-1}B_i\forall i\in\overline{1,n}\).

Từ đó \(\left[A_1,A_2,...,A_n\right]=d^{n-1}\left[B_1,B_2,...,B_n\right]\).

Mặt khác do \(\left(x_1,x_2,...,x_n\right)=1\Rightarrow\left[B_1,B_2,...B_n\right]=x_1x_2...x_n\).

Vậy \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=d.d^{n-1}x_1x_2...x_n=d^nx_1x_2...x_n=A\).

WW
Xem chi tiết
giải PT free
Xem chi tiết
tth_new
21 tháng 9 2018 lúc 9:44

Chả biết đúng hay sai! Cứ làm vậy

Ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\)

\(=\frac{a_1+a_2+...+a_{n-1}+a_n}{a_2+a_3+..+a_n+a_1}=1\Rightarrow a_1=a_2=...=a_n\) (theo t/c tỉ dãy số bằng nhau)

Do đó:

a) \(\frac{a_1^2+a_2^2+...+a_n^2}{\left(a_1+a_2+...+a_n\right)^2}=\frac{na_1^2}{\left(na_1\right)^2}=\frac{na_1^2}{n^2a_1^2}=\frac{1}{n}\)

b) \(\frac{a_1^7+a_2^7+...+a_n^7}{\left(a_1+a_2+...+a_n\right)^7}=\frac{na_1^7}{\left(na_1\right)^7}=\frac{na_1^7}{n^7a_1^7}=\frac{n}{n^7}\)

giải PT free
21 tháng 9 2018 lúc 9:52

Bạn gì có nhãn "CTV" gì ấy trả lời đúng không vậy mn? Đang bí bài này...=((

Tạ Hữu Việt
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
2 tháng 10 2019 lúc 21:44

CM :\(\left(1+a_1\right)+\left(1+a_2\right)+...+\left(1+a_n\right)\ge2^n\)

Áp dụng BĐT Cô si cho 2 số \(a_1\) và 1 :

\(a_1+1\ge2\sqrt{a_1}\ge0\)

Tương tự cũng có :

\(a_2+1\ge2\sqrt{a_2}\ge0\)

........

\(a_n+1\ge2\sqrt{a_n}\ge0\)

=> \(\left(1+a_1\right)+\left(1+a_2\right)+...+\left(1+a_n\right)\ge2^n\sqrt{a_1.a_2...a_n}=2^n\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a_1=a_2=...=a_n=1\)

Tạ Hữu Việt
2 tháng 10 2019 lúc 21:41

Mik sửa lại đề thành \(\left(1+a_1\right)+\left(1+a_2\right)+...+\left(1+a_n\right)\ge2^n\)

Yuki
Xem chi tiết
Lê Chí Cường
8 tháng 11 2015 lúc 20:54

Đặt \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=k\)

=>\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.....\frac{a_{n-1}}{a_n}.\frac{a_n}{a_1}=k.k.....k.k\)

=>\(k^n=\frac{a_1.a_2.....a_{n-1}.a_n}{a_2.a_3.....a_n.a_1}\)

=>\(k^n=1=1^n\)

=>k=1

=>\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=1\)

=>\(a_1=a_2=...=a_n\)

\(=>\frac{a^2_1+a^2_2+...+a_n^2}{\left(a_1+a_2+...+a_n\right)^2}\)

=\(\frac{a^2_1+a^2_1+...+a_1^2}{\left(a_1+a_1+...+a_1\right)^2}\)

=\(\frac{n.a^2_1}{\left(n.a_1\right)^2}=\frac{n.a_1^2}{n^2.a^2_1}=\frac{1}{n}\)

Yuki
8 tháng 11 2015 lúc 21:03

thế này dc ko

Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=\frac{a_1+a_2+...+a_{n-1}+a_n}{a_2+a_3+...+a_n+a_1}\Rightarrow a_1=a_2=...=a_n\)

\(\frac{a^1_2+a^2_2+...+a^2_n}{\left(a_1+a_2+...+a_n\right)}=\frac{na^2_1}{\left(na_1\right)^2}=\frac{1}{n}\)

Anh Mai
Xem chi tiết
Avicii
Xem chi tiết
Ơ Ơ BUỒN CƯỜI
28 tháng 5 2018 lúc 15:11

ÁP DỤNG BĐT Cauchy ta có : 

\(\text{a}_1+\text{a}_2+...+\text{a}_n\ge n^n\sqrt{\text{a}_1.\text{a}_2....\text{a}_n}\)  (1) 

\(\frac{1}{\text{a}_1}+\frac{1}{\text{a}_2}+...+\frac{1}{\text{a}_n}\ge n^n\sqrt{\frac{1}{\text{a}_1}\cdot\frac{1}{\text{a}_2}\cdot...\cdot\frac{1}{\text{a}_n}}\)(2) 

Nhân (1) và (2) vế với vế tương ứng ta có được BĐT (*) 

Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}\text{a}_1=\text{a}_2=...=\text{a}_n\\\frac{1}{\text{a}_1}=\frac{1}{\text{a}_2}=...=\frac{1}{\text{a}_n}\end{cases}}\)

                             \(\Leftrightarrow\text{a}_1=\text{a}_2=...=\text{a}_n\)