Tìm các số x1, x2, ...xn-1, xn biết \(\dfrac{x_1}{a_1}=\dfrac{x_2}{a_2}=...=\dfrac{x_{n-1}}{a_{n-1}}=\dfrac{x_n}{a_n}\) và \(x_1+x_2+...+x_n=c\) \(\left(a_1\ne0,...,a_n\ne0;a_1+a_2+...+a_n\ne0\right)\)
Cho dãy tỉ số bằng nhau \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}\) biết \(a_1+a_2+a_3+...+a_n\ne0;a_1=\sqrt{3}\)
Tính tổng \(a_1+a_2+a_3+...+a_n\)
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\)
\(a_1+a_2+...+a_n\ne0;a_1=-\sqrt{5}\)
tính a2;a3;...;an
cho \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1};a_1+a_2+..+a_{n-1}+a_n\ne0\)
Tính \(\frac{a^2_2+a^2_2+...+a^2_n}{\left(a_1+a_2+...+a_n\right)^2}\)
CMR:
Nếu \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_n}{a_{n+1}}\)thì\(\left(\frac{a_1+a_2+a_3+...+a_n}{a_2+a_3+a_4+..+a_{n+1}}\right)^n=\frac{a_1}{a_{n+1}}\)
Tính tổng A =\(\frac{c}{a_1.a_2}+\frac{c}{a_2.a_3}+....+\frac{c}{a_{n-1}.a_n}\)với \(a_2-a_1=a_3-a_2=...=a_n-a_{n-1}=k\)
Cho \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\)
Tính:
a) \(\frac{a_1^2+a_2^2+...+a_n^2}{\left(a_1+a_2+...+a_n\right)^2}\) b) \(\frac{a_1^7+a_2^7+...+a_n^7}{\left(a_1+a_2+...+a_n\right)^7}\)
Help me, please!
Cho \(\frac{a_1}{a_2}\)=\(\frac{a_2}{a_3}\)=..........=\(\frac{a_{n-1}}{a_n}\)=\(\frac{a_n}{a_1}\); \(a_1\)+\(a_2\)+.......+\(a_{n-1}\)+\(a_n\)# 0
Tính \(\frac{a_1^2+a_2^2+...+a_n^2}{\left(a_1+a_2+....+a_n\right)^2^{ }}\)
Tính tổng: A= \(\frac{c}{a_1.a_2}+\frac{c}{a_2.a_3}+...+\frac{c}{a_{n-1}.a_n}vớia_2-a_1=a_3-a_2=...=a_n-a_{n-1}=k\)
Mọi người giúp hộ mk bài này nha!!!!!