Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
....
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 6 2021 lúc 17:11

Với các số thực không âm a; b ta luôn có BĐT sau:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)

Áp dụng:

a. 

\(A\ge\sqrt{x-4+5-x}=1\)

\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)

\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)

b.

\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)

\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)

\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)

\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)

Edogawa Conan
30 tháng 6 2021 lúc 17:11

a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)

        =>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)

        =>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)

        =>A\(\ge\)1

Dấu '=' xảy ra <=> x=4 hoặc x=5

Vậy,Min A=1 <=>x=4 hoặc x=5

Còn câu b tương tự nhé

Nguyễn Lâm Ngọc
Xem chi tiết
Bình Trần Thị
Xem chi tiết
vvvvvvvv
Xem chi tiết
Hồng Phúc
1 tháng 7 2021 lúc 21:36

\(y=2cos^2x-2\sqrt{3}sinx.cosx+1\)

\(=2cos^2x-1-2\sqrt{3}sinx.cosx+2\)

\(=cos2x-\sqrt{3}sin2x+2\)

\(=2\left(\dfrac{1}{2}cos2x-\dfrac{\sqrt{3}}{2}sin2x\right)+2\)

\(=2cos\left(2x+\dfrac{\pi}{3}\right)+2\)

Ta có: \(cos\left(2x+\dfrac{\pi}{3}\right)\in\left[-1;1\right]\)

\(\Rightarrow min=0\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=-1\Leftrightarrow2x+\dfrac{\pi}{3}=\pi+k2\pi\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\)

\(\Rightarrow max=4\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=1\Leftrightarrow2x+\dfrac{\pi}{3}=k2\pi\Leftrightarrow x=-\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

Nguyễn Thị Ngọc Thơ
1 tháng 7 2021 lúc 21:36

\(y=2cos^2x-\sqrt{3}sin2x+1=cos2x-\sqrt{3}sin2x+2\)

\(y=2.cos\left(2x+\dfrac{\pi}{3}\right)+2\)

\(\forall x\in R->-1\le cos\left(2x+\dfrac{\pi}{3}\right)\)

=> \(Min_y=2.\left(-1\right)+2=0\) 

Mặt khác, theo Bunhiacopxki:

\(\left(cos2x+\sqrt{3}sin2x\right)^2\le\left(1^2+\sqrt{3}^2\right)\left(cos^22x+sin^22x\right)=4\)

=>\(Max_y=4\)

 

Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

Đắc Dũng Chu
Xem chi tiết
Trương Minh Trọng
28 tháng 6 2017 lúc 20:29

\(A=\sqrt{3-2x^2+2x}=\sqrt{-2\left(x^2-x+\frac{1}{4}\right)+\frac{7}{2}}=\sqrt{-2\left(x-\frac{1}{2}\right)^2+\frac{7}{2}}\le\sqrt{\frac{7}{2}}\)

Vậy maxA = \(\frac{\sqrt{14}}{2}\)đạt được khi \(x=\frac{1}{2}\)

Thiên Yết
Xem chi tiết
Hippo
Xem chi tiết
nguyenlinh
Xem chi tiết
Nguyễn Thị Thương Hoài
16 tháng 12 2022 lúc 12:56

đk x2 - 2x \(\ge\) 0  => x \(\in\) (-\(\infty\); 0] \(\cup\) [ 2; + \(\infty\))

\(\sqrt{x^2-2x}\) \(\ge\) 0

\(\sqrt{x^2-2x}\) \(\le\) 0 

\(\le\) 3 => A(max) = 3 <=> x2 - 2x = 0 \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)