Tìm giá trị lớn nhất của \(\sqrt{21-2x}+\sqrt{2x-3}\)
tìm giá trị lớn nhất,giá trị nhỏ nhất của biểu thức sau:
a A= \(\sqrt{x-4}+\sqrt{5-x}\)
b B= \(\sqrt{3-2x}+\sqrt{3x+4}\)
Với các số thực không âm a; b ta luôn có BĐT sau:
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)
Áp dụng:
a.
\(A\ge\sqrt{x-4+5-x}=1\)
\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)
\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)
b.
\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)
\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)
\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)
\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)
a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)
=>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)
=>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)
=>A\(\ge\)1
Dấu '=' xảy ra <=> x=4 hoặc x=5
Vậy,Min A=1 <=>x=4 hoặc x=5
Còn câu b tương tự nhé
Tìm giá trị lớn nhất của biểu thức: \(B=\sqrt{2x-3}+\sqrt{5-2x}\)
tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\sqrt{5\sin^2x+1}+\sqrt{5\cos^2x+1}\) ?
tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau:
\(y=2cos^2x-2\sqrt{3}sinxcosx+1\)
\(y=2cos^2x-2\sqrt{3}sinx.cosx+1\)
\(=2cos^2x-1-2\sqrt{3}sinx.cosx+2\)
\(=cos2x-\sqrt{3}sin2x+2\)
\(=2\left(\dfrac{1}{2}cos2x-\dfrac{\sqrt{3}}{2}sin2x\right)+2\)
\(=2cos\left(2x+\dfrac{\pi}{3}\right)+2\)
Ta có: \(cos\left(2x+\dfrac{\pi}{3}\right)\in\left[-1;1\right]\)
\(\Rightarrow min=0\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=-1\Leftrightarrow2x+\dfrac{\pi}{3}=\pi+k2\pi\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\)
\(\Rightarrow max=4\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=1\Leftrightarrow2x+\dfrac{\pi}{3}=k2\pi\Leftrightarrow x=-\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)
\(y=2cos^2x-\sqrt{3}sin2x+1=cos2x-\sqrt{3}sin2x+2\)
\(y=2.cos\left(2x+\dfrac{\pi}{3}\right)+2\)
\(\forall x\in R->-1\le cos\left(2x+\dfrac{\pi}{3}\right)\)
=> \(Min_y=2.\left(-1\right)+2=0\)
Mặt khác, theo Bunhiacopxki:
\(\left(cos2x+\sqrt{3}sin2x\right)^2\le\left(1^2+\sqrt{3}^2\right)\left(cos^22x+sin^22x\right)=4\)
=>\(Max_y=4\)
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Bài 1:
Ta có: \(D=\sqrt{16x^4}-2x^2+1\)
\(=4x^2-2x^2+1\)
\(=2x^2+1\)
Tìm giá trị lớn nhất của A = \(\sqrt{3-2x^2+2x}\)
\(A=\sqrt{3-2x^2+2x}=\sqrt{-2\left(x^2-x+\frac{1}{4}\right)+\frac{7}{2}}=\sqrt{-2\left(x-\frac{1}{2}\right)^2+\frac{7}{2}}\le\sqrt{\frac{7}{2}}\)
Vậy maxA = \(\frac{\sqrt{14}}{2}\)đạt được khi \(x=\frac{1}{2}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
1,\(y=5-3cosx\)
2,\(y=3cos^2x-2cosx+2\)
3,\(y=cos^2x+2cos2x\)
4,\(y=\sqrt{5-2sin^2x.cos^2x}\)
5,\(y=cos2x-cos\left(2x-\dfrac{\pi}{3}\right)\)
6,\(y=\sqrt{3}sinx-cosx-2\)
7,\(y=2cos^2x-sin2x+5\)
8,\(y=2sin^2x-sin2x+10\)
9,\(y=sin^6x+cos^6x\)
Tìm giá trị lớn nhất của biểu thức : \(A=5+\sqrt{3+2x-x^2}\)
tìm giá trị lớn nhất: \(A=3-\sqrt{x^2-2x}\)
đk x2 - 2x \(\ge\) 0 => x \(\in\) (-\(\infty\); 0] \(\cup\) [ 2; + \(\infty\))
\(\sqrt{x^2-2x}\) \(\ge\) 0
- \(\sqrt{x^2-2x}\) \(\le\) 0
A \(\le\) 3 => A(max) = 3 <=> x2 - 2x = 0 \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)