Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Bảo Trân
Xem chi tiết
Pham Van Hung
20 tháng 10 2018 lúc 18:18

Đặt \(\hept{\begin{cases}x+5=a\\x-4=b\end{cases}\Rightarrow2x+1=a+b}\)

    \(\left(x+5\right)^4+\left(x-4\right)^4=\left(2x+1\right)^4\)

\(\Rightarrow a^4+b^4=\left(a+b\right)^4\)

\(\Rightarrow a^4+b^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

\(\Rightarrow4a^3b+6a^2b^2+4ab^3=0\)

\(\Rightarrow4ab\left[a^2+\frac{3}{2}ab+b^2\right]=0\)(1)

Mà \(a^2+\frac{3}{2}ab+b^2=\left(a+\frac{3}{4}b\right)^2+\frac{7}{16}b^2>0\)(2) 

(vì nếu a và b đồng thời bằng 0 thì x + 5 và x - 4 đồng thời = 0 điều đó vô lý)

Từ (1) và (2), ta được

\(\orbr{\begin{cases}a=0\\b=0\end{cases}\Rightarrow}\orbr{\begin{cases}x+5=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=4\end{cases}}}\)

Chúc bạn học tốt.
 

Hoàn Hà
Xem chi tiết
⭐Hannie⭐
20 tháng 5 2023 lúc 15:51

`5-(x-6)=4(3-2x)`

`<=>5-x+6-4(3-2x)=0`

`<=> 5-x+6-12 +8x=0`

`<=> 7x -1=0`

`<=> 7x=1`

`<=>x=1/7`

Vậy pt đã cho có nghiệm `x=1/7`

__

`3-x(1-3x) =5(1-2x)`

`<=> 3-x+3x^2=5-10x`

`<=> 3-x+3x^2-5+10x=0`

`<=> 3x^2 +9x-2=0`

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9+\sqrt{105}}{6}\\x=\dfrac{-9-\sqrt{105}}{6}\end{matrix}\right.\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\dfrac{-9+\sqrt{105}}{6};\dfrac{-9-\sqrt{106}}{5}\right\}\)

__

`(x-3)(x+4) -2(3x-2)=(x-4)^2`

`<=>x^2+4x-3x-12- 6x +4 =x^2 -8x+16`

`<=>x^2-5x-8=x^2-8x+16`

`<=> x^2 -5x-8-x^2+8x-16=0`

`<=> 3x-24=0`

`<=>3x=24`

`<=>x=8`

Vậy pt đã cho có nghiệm `x=8`

a) 5-(x-6)=4(3-2x)

=> 5 – x + 6 = 12 – 8x

=> -x + 8x = 12 – 5 – 6

=> 7x = 1

=> x=1/7

Vậy phương trình có nghiệm x=1/7

 b) 3 - x ( 1 - 3x)=5(1-2x)

=> 3-x+3x^2=5-10x

=> 3x^2+9x-2= 0

0=105

=> x =\(\dfrac{-9-\sqrt{105}}{6}\)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 3 2018 lúc 12:06

a) Điều kiện: x + 2 ≠ 0 và x – 2 ≠ 0 ⇔ x ≠ ± 2

(Khi đó: x2 – 4 = (x + 2)(x – 2) ≠ 0)

Vậy tập nghiệm của pt là: S = {-1; 1}

b) Điều kiện: 2x ≥ 0 ⇔ x ≥ 0

Khi đó: |x – 5| = 2x ⇔ x – 5 = 2x hoặc x – 5 = -2x

⇔ x = -5 hoặc x = 5/3

Vì x ≥ 0 nên ta lấy x = 5/3 . Tập nghiệm : S = {5/3}

c) x – 2)2 + 2(x – 1) ≤ x2 + 4

⇔ x2 – 4x + 4 + 2x – 2 ≤ x2 + 4

⇔ -2x ≤ 2

⇔ x ≥ -1

Tập nghiệm S = {x | x ≥ -1}

AK-47
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 5 2023 lúc 20:49

a: =>4x^2-24x+36-4x^2+4x-1<10

=>-20x<10-35=-25

=>x>=5/4

b: =>x(x^2-25)-x^3-8<=3

=>x^3-25x-x^3-8<=3

=>-25x<=11

=>x>=-11/25

XiangLin Linh
Xem chi tiết
Mai Anh
25 tháng 2 2022 lúc 19:09

ĐKXĐ: ` x ne 1 ; x ne 4`

`(2x+1)/(x^2-5x+4) + 5/(x-1) = 2/(x-4)`

`<=> (2x+1)/[(x-1)(x-4)] + [5(x-4)]/[(x-1)(x-4)] = [2(x-1)]/[(x-1)(x-4)]`

`=> 2x+1 + 5x -20 = 2x-2`

`<=> 5x = 17`

`<=> x= 17/5`(thỏa mãn ĐKXĐ)

Vậy tập nghiệm của phương trình là `S={ 17/5}`

ILoveMath
25 tháng 2 2022 lúc 19:23

undefined

Vũ Gia Huy
Xem chi tiết
Trí Tiên亗
23 tháng 2 2020 lúc 14:45

1) \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)

2) \(9x^2-1=3x+1\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=\frac{2}{3}\end{cases}}\)

Khách vãng lai đã xóa
nood
Xem chi tiết
YangSu
31 tháng 5 2023 lúc 20:38

\(a,4\left(x-3\right)^2-\left(2x-1\right)^2< 10\)

\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-10< 0\)
\(\Leftrightarrow4x^2-24x+36-4x^2+4x-1-10< 0\)

\(\Leftrightarrow-20x< -25\)

\(\Leftrightarrow x>\dfrac{5}{4}\)

\(b,x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)\le3\)

\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)\le3\)

\(\Leftrightarrow x^3-25x-\left(x^3+8\right)\le3\)

\(\Leftrightarrow x^3-25x-x^3-8-3\le0\)

\(\Leftrightarrow-25x\le11\)

\(\Leftrightarrow x\ge-\dfrac{11}{25}\)

Nguyen Thanh Thuy
Xem chi tiết
hya_seije_jaumeniz
24 tháng 6 2018 lúc 13:29
x \(\frac{5}{2}\) 4 
2x-5-0+|+
x-4-|-0+

+) Nếu  \(x\le\frac{5}{2}\Leftrightarrow\left|2x-5\right|=5-2x\)

                                  \(\left|x-4\right|=4-x\)

\(pt\Leftrightarrow5-2x-4+x=4x\)

\(\Leftrightarrow-5x=-1\)

\(\Leftrightarrow x=\frac{1}{5}\left(tm\right)\)

+) Nếu  \(\frac{5}{2}< x\le4\Leftrightarrow\left|2x-5\right|=2x-5\)

                                           \(\left|x-4\right|=4-x\)

\(pt\Leftrightarrow2x-5-4+x=4x\)

\(\Leftrightarrow-x=9\)

\(\Leftrightarrow x=-9\) (loại)

+) Nếu  \(x>4\Leftrightarrow\left|2x-5\right|=2x-5\)

                                \(\left|x-4\right|=x-4\)

\(pt\Leftrightarrow2x-5-x+4=4x\)

\(\Leftrightarrow-3x=1\)

\(\Leftrightarrow x=-\frac{1}{3}\)( loại )

Vậy ...

( p/s : câu b tương tự )

Quang Vũ
Xem chi tiết
Akai Haruma
15 tháng 4 2023 lúc 18:05

Lời giải:
ĐKXĐ: $x\neq 0; \frac{-3}{2}; \frac{-1}{2}; -3$

PT $\Leftrightarrow (\frac{1}{x}-\frac{3}{2x+1})+(\frac{5}{2x+3}-\frac{4}{x+3})=0$

$\Leftrightarrow \frac{1-x}{x(2x+1)}+\frac{3-3x}{(2x+3)(x+3)}=0$

$\Leftrightarrow \frac{1-x}{x(2x+1)}+\frac{3(1-x)}{(2x+3)(x+3)}=0$

$\Leftrightarrow (1-x)\left[\frac{1}{x(2x+1)}+\frac{3}{(2x+3)(x+3)}\right]=0$

TH1: $1-x=0\Leftrightarrow x=1$ (tm) 

TH2: $\frac{1}{x(2x+1)}+\frac{3}{(2x+3)(x+3)}=0$

$\Rightarrow (2x+3)(x+3)+3x(2x+1)=0$

$\Leftrightarrow 8x^2+12x+9=0$

$\Leftrightarrow (2x+3)^2+4x^2=0$

$\Rightarrow (2x+3)^2=x^2=0$ (vô lý) 

Do đó $x=1$ là nghiệm duy nhất.