Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Thủy Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 14:23

loading...

loading...

Nguyễn Thị Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2021 lúc 0:14

Câu 58: B

Câu 59: C

vuongnhatbac
Xem chi tiết
vuongnhatbac
Xem chi tiết
vuongnhatbac
Xem chi tiết
Thanh Thủy Nguyễn
Xem chi tiết
Kiều Vũ Linh
3 tháng 10 2023 lúc 22:16

Bài 6

Ta có:

sin²x + cos²x = 1

⇒ cos²x = 1 - sin²x

= 1 - 1/9

= 8/9

⇒ cosx = 2√2/3

⇒ tanx = sinx : cosx

= 1/3 : 22/3

= √2/4

⇒ cotx = 1 : tanx

= 1 : √2/4

= 2√2

Thanh Thủy Nguyễn
Xem chi tiết
Toru
3 tháng 10 2023 lúc 21:38

\(a,P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\left(x\ge0;x\ne1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x} +1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(---\)

\(b,P< \dfrac{1}{2}\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}< \dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{x}-3}{2\left(\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\left(vì.2\left(\sqrt{x}+1\right)>0\forall x\ge0\right)\)

\(\Leftrightarrow\sqrt{x}< 3\)

\(\Leftrightarrow x< 9\)

Kết hợp với điều kiện của \(x\), ta được:

\(0\le x< 9;x\ne1\) thì \(P< \dfrac{1}{2}\)

#\(Toru\)

Thanh Thủy Nguyễn
Xem chi tiết
HT.Phong (9A5)
4 tháng 10 2023 lúc 5:26

Bài 2:

Ta có:

\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\) 

A nhận giá trị nguyên khi \(\dfrac{4}{\sqrt{x}-3}\) nguyên:

\(\Rightarrow4\) ⋮ \(\sqrt{x}-3\) 

\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Mà: \(\sqrt{x}-3\ge-3\)

\(\Rightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{4;2;5;1;7\right\}\)

\(\Rightarrow x\in\left\{16;4;25;1;49\right\}\)

Thanh Thủy Nguyễn
Xem chi tiết
Toru
3 tháng 10 2023 lúc 21:56

\(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2-7}{\sqrt{x}+2}=1-\dfrac{7}{\sqrt{x}+2}\) (ĐK: \(x\ge0\))

Để \(A\) nhận giá trị nguyên thì \(1-\dfrac{7}{\sqrt{x}+2}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{7}{\sqrt{x}+2}\) nhận giá trị nguyên

\(\Rightarrow\sqrt{x}+2\inƯ\left(7\right)\)

\(\Rightarrow\sqrt{x}+2\in\left\{1;7;-1;-7\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{-1;5;-3;-9\right\}\) mà \(\sqrt{x}\ge0\forall x\ge0\)

\(\Rightarrow\sqrt{x}=5\)

\(\Rightarrow x=25\left(tmdk\right)\)

#\(Toru\)