Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tung vn
Xem chi tiết
Ngô Bá Hùng
13 tháng 10 2019 lúc 9:25

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\frac{x+y+z}{y+z+t}\)

\(\frac{x^3+y^3+z^3}{y^3+z^3+t^3}\Leftrightarrow\left(\frac{x+y+z}{y+z+t}\right)^3\)

\(\Rightarrow\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x+y+z}{y+z+t}.\frac{x+y+z}{y+z+t}.\frac{x+y+z}{y+z+t}=\frac{x}{y}.\frac{y}{z}.\frac{z}{t}=\frac{x}{t}\) (đpcm)

Thị Lương Hồ
Xem chi tiết
Kiệt Nguyễn
12 tháng 9 2020 lúc 10:41

\(VP=\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}=\left(\frac{x}{y+z+t}+\frac{y+z+t}{9x}\right)+\left(\frac{y}{z+t+x}+\frac{z+t+x}{9y}\right)+\left(\frac{z}{t+x+y}+\frac{t+x+y}{9z}\right)+\left(\frac{t}{x+y+z}+\frac{x+y+z}{9t}\right)+\frac{8}{9}\left(\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\right)\)\(\ge8\sqrt[8]{\frac{x}{y+z+t}.\frac{y}{z+t+x}.\frac{z}{t+x+y}.\frac{t}{x+y+z}.\frac{y+z+t}{9x}.\frac{z+t+x}{9y}.\frac{t+x+y}{9z}.\frac{x+y+z}{9t}}+\frac{8}{9}\left(\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{z}{y}+\frac{t}{y}+\frac{x}{y}+\frac{t}{z}+\frac{x}{z}+\frac{y}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}\right)\)\(\ge\frac{8}{3}+\frac{8}{9}.12\sqrt[12]{\frac{y}{x}.\frac{z}{x}.\frac{t}{x}.\frac{z}{y}.\frac{t}{y}.\frac{x}{y}.\frac{t}{z}.\frac{x}{z}.\frac{y}{z}.\frac{x}{t}.\frac{y}{t}.\frac{z}{t}}=\frac{8}{3}+\frac{8}{9}.12=\frac{40}{3}=VT\left(đpcm\right)\)

Đẳng thức xảy ra khi x = y = z = t > 0 

Khách vãng lai đã xóa
Vương Hoàng Minh
Xem chi tiết
witch roses
26 tháng 5 2015 lúc 20:32

đặt A=x/x+y+z    +y/y+z+t   +z/z+t+x   +t/t+x+y

ta có      x/x+y+z>x/x+y+z+t

y/y+z+t>y/x+y+z+t

z/z+t+x>z/z+t+x+y

t/t+x+y>t/x+t+y+z

=>A>x/x+y+t+z  +t/x+y+t+z  +z/x+y+t+z  +y/x+t+y+z=x+y+z+t/x+y+z+t=1>3/4  (1)

*)y/y+z+t<y+x/y+z+t+x

x/x+y+z<x+t/x+y+z+t

z/z+t+x<z+y/x+y+z+t

t/t+x+y<t+z/t+x+y+z

=>A<y+x/x+y+z+t  +x+t/x+y+z+t  +z+y/x+y+z+t  +t+z/x+y+z+t

            =y+x+x+t+z+y+t+z/x+y+z+t=2(x+y+z+t)/x+y+z+t=2<5/2   (2)

từ (1) và (2) =>3/4<A<5/2

=>

Trịnh Xuân Tuấn
26 tháng 5 2015 lúc 20:25

Ta có:

\(\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}

Quốc Bảo
Xem chi tiết
Kuro Kazuya
7 tháng 2 2017 lúc 4:49

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm:

\(\Rightarrow\left\{\begin{matrix}3yzt\le y^3+z^3+t^3\\3xtz\le x^3+t^3+z^3\\3xyt\le x^3+y^3+t^3\\3xyz\le x^3+y^3+z^3\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x^3+3yzt\le x^3+y^3+z^3+t^3\\y^3+3xtz\le x^3+y^3+z^3+t^3\\z^3+3xyt\le x^3+y^3+z^3+t^3\\t^3+3xyz\le x^3+y^3+z^3+t^3\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{x^3}{x^3+3yzt}\ge\frac{x^3}{x^3+y^3+z^3+t^3}\\\frac{y^3}{y^3+3xtz}\ge\frac{y^3}{x^3+y^3+z^3+t^3}\\\frac{z^3}{z^3+3xyt}\ge\frac{z^3}{x^3+y^3+z^3+t^3}\\\frac{t^3}{t^3+3xyz}\ge\frac{t^3}{x^3+y^3+z^3+t^3}\end{matrix}\right.\)

\(\Rightarrow\frac{x^3}{x^3+3yzt}+\frac{y^3}{y^3+3xtz}+\frac{z^3}{z^3+3xyt}+\frac{t^3}{t^3+3xyz}\ge\frac{x^3+y^3+z^3+t^3}{x^3+y^3+z^3+t^3}\)

\(\Rightarrow\frac{x^3}{x^3+3yzt}+\frac{y^3}{y^3+3xtz}+\frac{z^3}{z^3+3xyt}+\frac{t^3}{t^3+3xyz}\ge1\) ( đpcm )

★ Kudo_Shinichi ★
8 tháng 2 2017 lúc 13:31

Khó thế bạn ! batngobucminhoho

Lee Vincent
Xem chi tiết
pham trung thanh
5 tháng 11 2017 lúc 11:23

Áp dụng tính chất dãy tỉ số bằng nhau do đã có \(y+z+t\ne0\), sau đó nhân dãy đã cho vs nhau. cái kia mũ 3 lên

QuocDat
5 tháng 11 2017 lúc 11:23

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x+y+z}{y+z+t}=\frac{x-y+z}{y-z+t}=\frac{x+y-z}{y+z-t}\)

=> \(\frac{x+y+z}{y+z+t}=\frac{x}{t}\) (1)

=> \(\frac{x-y+z}{y-z+t}=\frac{x}{t}\) (2)

=> \(\frac{x+y-z}{y+z-t}=\frac{x}{t}\) (3)

Từ (1);(2) và (3) => đpcm

ST
5 tháng 11 2017 lúc 15:55

Ta có: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\frac{x+y+z}{y+z+t}\)

\(\Rightarrow\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x^3}{y^3}=\frac{x}{y}\cdot\frac{x}{y}\cdot\frac{x}{y}=\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{t}=\frac{x}{t}\) (đpcm)

Lazy kute
Xem chi tiết
Heo Mập
Xem chi tiết
Toxic_Stingks
13 tháng 10 2019 lúc 9:14

Đặt x/y = y/z = z/t = k

=> x/y . y/z . z/t = x/t k^3 (1)

Có x/y = y/z = z/t = k = x + y + z/y + z + t(t/c dãy tỉ số bằng nhau)

=> x^3/y^3 + y^3/z^3 + z^3/t^3 = x^3 + y^3 + z^3/y^3 + z^3 + t^3 = k^3 (2)

Từ (1) và (2) => x^3 + y^3 + z^3/y^3 + z^3 + t^3 = x/t = k^3

Vậy x^3 + y^3 + z^3/y^3 + z^3 + t^3 = x/t 

Nguyen Tuan Dung
Xem chi tiết
Yim Yim
Xem chi tiết
Phùng Minh Quân
16 tháng 5 2020 lúc 18:34

\(\Sigma\frac{x^3}{y^2}=\Sigma\frac{x}{y^2}\left(x-y\right)^2+\frac{\Sigma z\left(x^3-yz^2\right)^2}{xyz\left(x+y+z\right)}+\Sigma\frac{x^2}{y}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)

Khách vãng lai đã xóa
tth_new
27 tháng 6 2020 lúc 20:45

\(VT-VP=\Sigma\frac{\left(x+y\right)\left(x-y\right)^2}{y^2}\ge0\)

Khách vãng lai đã xóa