Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
1 tháng 10 2023 lúc 21:00

Parabol có đỉnh I(1;4) hay I(1;4) thuộc parabol

\( \Rightarrow 4 = {1^2} + 1.b + c \Leftrightarrow b + c = 3\)

Chọn C.

Phan Trân Mẫn
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 10 2019 lúc 15:09

Ta có pt:

\(\left\{{}\begin{matrix}\frac{1}{a}=1\\\frac{4ac-4}{4a}=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\c=-2\end{matrix}\right.\)

\(\Rightarrow y=x^2-2x-2\)

Sus :)
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 6 2021 lúc 22:42

a) Thay x=1 và y=-2 vào (P), ta được:

\(a\cdot1^2-4\cdot1+c=-2\)

\(\Leftrightarrow a-4+c=-2\)

hay a+c=-2+4=2

Thay x=2 và y=3 vào (P), ta được:

\(a\cdot2^2-4\cdot2+c=3\)

\(\Leftrightarrow4a-8+c=3\)

hay 4a+c=11

Ta có: \(\left\{{}\begin{matrix}a+c=2\\4a+c=11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3a=-9\\a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2-a=2-3=-1\end{matrix}\right.\)

Vậy: (P): \(y=3x^2-4x-1\)

Lan Nhi Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 3 2022 lúc 14:28

A là giao điểm AB và AD nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}2x-y-1=0\\x-2y-5=0\end{matrix}\right.\) \(\Rightarrow A\left(-1;-3\right)\)

Do I thuộc \(y^2=x\) nên tọa độ có dạng: \(I\left(a^2;a\right)\)

I là tâm hình thoi \(\Rightarrow d\left(I;AB\right)=d\left(I;AD\right)\Rightarrow\dfrac{\left|2a^2-a-1\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|a^2-2a-5\right|}{\sqrt{2^2+\left(-1\right)^2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}2a^2-a-1=a^2-2a-5\\2a^2-a-1=-a^2+2a+5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a^2+a+4=0\left(vn\right)\\3a^2-3a-6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=-1\\a=2\end{matrix}\right.\)

TH1: \(a=-1\Rightarrow I\left(1;-1\right)\)

Do I là trung điểm AC nên tọa độ C: \(\left\{{}\begin{matrix}x_C=2x_I-x_A=3\\y_C=2y_I-y_A=1\end{matrix}\right.\) \(\Rightarrow C\left(3;1\right)\)

Đường thẳng BC song song AD và đi qua C nên có pt:

\(1\left(x-3\right)-2\left(y-1\right)=0\Leftrightarrow x-2y-1=0\)

B là giao điểm AB và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}2x-y-1=0\\x-2y-1=0\end{matrix}\right.\) \(\Rightarrow B...\)

Tương tự, đường thẳng CD song song AB và đi qua C nên có pt:

\(2\left(x-3\right)+1\left(y-1\right)=0\Leftrightarrow...\Rightarrow D\)

Tương tự với trường hợp \(a=2\Rightarrow I\left(4;2\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 5 2018 lúc 12:25

Đáp án D

Ma Ron
Xem chi tiết
HT.Phong (9A5)
1 tháng 5 2023 lúc 14:46

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y=ax^2+bx+c\) (với \(a\ne0\)) là một parabol (P):

Có đỉnh S với hoành độ: \(x_S=-\dfrac{b}{2a}\)

Tung độ: \(y_S=-\dfrac{\Delta}{4a}\left(\Delta=b^2-4ac\right)\)

Với hàm số \(y=x^2-2x-1\) ta có: \(a=1;b=-2;c=-1\) thì đỉnh S có toạ độ là:

\(x_S=-\dfrac{b}{2a}=\dfrac{-\left(-2\right)}{2.1}=1\)

\(y_S=-\dfrac{\Delta}{4a}=-\dfrac{b^2-4ac}{4a}=-\dfrac{\left(-2\right)^2-4.1.-1}{4.1}=-2\)

Vậy \(S=\left\{1;-2\right\}\)

Nguyễn Lê Phước Thịnh
1 tháng 5 2023 lúc 14:14

Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{2}{2}=1\\y=-\dfrac{\left(-2\right)^2-4\cdot1\cdot\left(-1\right)}{4}=-\dfrac{4+4}{4}=-2\end{matrix}\right.\)

Nguyễn Vũ Minh Thư
Xem chi tiết
Nguyễn Huy Tú
15 tháng 8 2021 lúc 11:59

mình nghĩ pt (P) : y = ax^2 - bx + c chứ ? 

a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)

(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1) 

(P) đi qua điểm C(-1;1)  <=> \(a+b+c=1\)(2) 

Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)

Vậy pt Parabol có dạng \(x^2-x-1=y\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
15 tháng 8 2021 lúc 13:34

Bài 1b 

(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)

(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)

Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)

tương tự nhé 

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 1 2018 lúc 16:27

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
1 tháng 10 2023 lúc 21:02

a) Parabol: \(y = a{(x - h)^2} + k\) với \(I(h;k) = \left( {\frac{5}{2}; - \frac{1}{4}} \right)\) là tọa độ đỉnh.

\( \Rightarrow y = a{\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4}\)

(P) đi qua \(A(1;2)\) nên \(2 = a{\left( {1 - \frac{5}{2}} \right)^2} - \frac{1}{4} \Rightarrow a = 1\)

\( \Rightarrow y = {\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4} \Leftrightarrow y = {x^2} - 5x + 6\)

Vậy parabol đó là \(y = {x^2} - 5x + 6\)

b) Vẽ parabol \(y = {x^2} - 5x + 6\)

+ Đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\)

+ Giao với Oy tại điểm \((0;6)\)

+ Giao với Ox tại điểm \((3;0)\) và \((2;0)\)

+ Trục đối xứng \(x = \frac{5}{2}\). Điểm đối xứng với điểm \((0;6)\) qua trục đối xứng có tọa độ \((5;6)\)

 

b) Hàm số đồng biến trên khoảng \(\left( { - \frac{5}{2}; + \infty } \right)\)

Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{5}{2}} \right)\)

c) \(f(x) \ge 0 \Leftrightarrow {x^2} - 5x + 6 \ge 0\)

Cách 1: Quan sát đồ thị, ta thấy các điểm có\(y \ge 0\) ứng với hoành độ \(x \in ( - \infty ;2] \cup [3; + \infty )\)

Do đó tập nghiệm của BPT \(f(x) \ge 0\) là \(S = ( - \infty ;2] \cup [3; + \infty )\)

Cách 2:

\(\begin{array}{l} \Leftrightarrow {x^2} - 5x + 6 \ge 0\\ \Leftrightarrow (x - 2)(x - 3) \ge 0\end{array}\)

Do đó \(x - 2\) và \(x - 3\) cùng dấu. Mà \(x - 2 > x - 3\;\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left[ \begin{array}{l}x - 3 \ge 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le 2\end{array} \right.\)

Tập nghiệm của BPT là \(S = ( - \infty ;2] \cup [3; + \infty )\)