Tìm x,y biết:x+y=2 và\(\left(x+1\right)^{21}+\left(y+2\right)^{21}=0\)
Giúp mình với
\(x^3+3x^2+3x+1+y^3+3y^3+3y+1+x+y+2=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)+1\right)=0\)
\(\Leftrightarrow x+y+2=0\)
(phần trong ngoặc \(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\frac{\left(y+1\right)^2}{4}+\frac{3\left(y+1\right)^2}{4}+1\)
\(=\left(x+1-\frac{y+1}{4}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\) luôn dương)
\(\Rightarrow x+y=-2\)
Mà \(xy>0\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x>0\\-y>0\end{matrix}\right.\)
Ta có: \(\frac{1}{-x}+\frac{1}{-y}\ge\frac{4}{-\left(x+y\right)}=2\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\le-2\) (đpcm)
Dấu "=" xảy ra khi và chỉ khi \(x=y=-1\)
2/ \(x;y;z\ne0\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\) dù trường hợp nào thì thay vào ta đều có \(B=0\)
3/ \(\Leftrightarrow mx-2x+my-y-1=0\)
\(\Leftrightarrow m\left(x+y\right)-\left(2x+y+1\right)=0\)
Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà d đi qua
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=0\\2x_0+y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)
Vậy d luôn đi qua \(A\left(-1;1\right)\) với mọi m
tìm khoảng đồng biến và nghịch biến của hàm số sau
a) \(y'=\left(x-3\right)^3\left(x-1\right)^{22}\left(-3x-6\right)^7\)
b) \(y'=\left(4x-3\right)^3\left(x^2-1\right)^{21}\left(3x-9\right)^7\)
a: \(y'< 0\)
=>\(\left(x-3\right)^3\cdot\left(x-1\right)^{22}\cdot\left(-3x-6\right)^7< 0\)
=>\(\left(x-3\right)\left(-3x-6\right)< 0\)
=>\(\left(x+2\right)\left(x-3\right)>0\)
=>\(\left[{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)
y'>0
=>\(\left(x+2\right)\left(x-3\right)< 0\)
=>\(-2< x< 3\)
y'=0
=>\(\left[{}\begin{matrix}x-3=0\\x-1=0\\-3x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)
Ta có bảng xét dấu sau:
x | \(-\infty\) -2 1 3 +\(\infty\) |
y' | - 0 + 0 + 0 - |
Vậy: Hàm số đồng biến trên các khoảng \(\left(-2;1\right);\left(1;3\right)\)
Hàm số nghịch biến trên các khoảng \(\left(-\infty;-2\right);\left(3;+\infty\right)\)
b: y'<0
=>\(\left(4x-3\right)^3\cdot\left(x^2-1\right)^{21}\left(3x-9\right)^7< 0\)
=>\(\left(4x-3\right)\left(3x-9\right)\left(x^2-1\right)< 0\)
=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)< 0\)
TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< \dfrac{3}{4}\)
TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1< x< 3\)
y'>0
=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)>0\)
TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\-1< x< 1\end{matrix}\right.\Leftrightarrow\dfrac{3}{4}< x< 1\)
Ta sẽ có bảng xét dấu sau đây:
x | \(-\infty\) -1 3/4 1 3 +\(\infty\) |
y' | + 0 - 0 + 0 - 0 + |
Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;-1\right);\left(\dfrac{3}{4};1\right);\left(3;+\infty\right)\)
Hàm số nghịch biến trên các khoảng \(\left(-1;\dfrac{3}{4}\right);\left(1;3\right)\)
1.Tìm GTNN
a.\(x^2+y^2+z^2-2x+4y-6z+2016\)
b.\(2x^2+2xy+y^2-2x-2y+2\)
2.Tìm GTLN
a.\(_{-8x^2+17x+21}\)
b.\(-\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+15\)
CÁC BẠN LÀM ƠN GIÚP MÌNH VỚI NHÉ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1. Giải phương trình nghiệm nguyên
a) \(x^2+4x+2018^{10}\)
b) \(x^2+4x+\left(y-1\right)^2=21\)
c) \(x^2+3\left(y-1\right)^2=2021\)
d) \(\left(3x-1\right)^{2020}-18\left(y-2\right)^{2019}=2019^{2020}\)
2. Tìm x,y ∈ Z
a) \(x^2-y^2+6y=56\)
b) \(x^2-4x+9y^2-6y=11\)
\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)
Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương
\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)
Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm
\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)
Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm
1a. Đề lỗi
1b.
PT $\Leftrightarrow (x+2)^2+(y-1)^2=25$
$\Leftrightarrow (x+2)^2=25-(y-1)^2\leq 25$
$(x+2)^2$ là scp không vượt quá $25$ nên có thể nhận các giá trị $0,1,4,9,16,25$
Nếu $(x+2)^2=0\Rightarrow (y-1)^2=25$
$\Rightarrow (x,y)=(-2, 6), (-2, -4)$
Nếu $(x+2)^2=1\Rightarrow (y-1)^2=24$ không là scp (loại)
Nếu $(x+2)^2=4\Rightarrow (y-1)^2=21$ không là scp (loại)
Nếu $(x+2)^2=9\Rightarrow (y-1)^2=16$
$\Rightarrow (x,y)=(1, 5), (1, -3), (-5,5), (-5, -3)$
Nếu $(x+2)^2=25\Rightarrow (y-1)^2=0$
$\Rightarrow (x,y)=(3, 1), (-7, 1)$
1c.
Vì $x^2$ là scp nên $x^2\equiv 0,1\pmod 3$
$3(y-1)^2\equiv 0\pmod 3$
$\Rightarrow x^2+3(y-1)^2\equiv 0,1\pmod 3$
Mà $2021\equiv 2\pmod 3$
Do đó pt $x^2+3(y-1)^2=2021$ vô nghiệm
1d.
Ta thấy:
$(3x-1)^{2020}$ là scp không chia hết cho $3$ nên $(3x-1)^{2020}\equiv 1\pmod 3$
$18(y-2)^{2019}\equiv 0\pmod 3$
$\Rightarrow (3x-1)^{2020}+18(y-2)^{2019}\equiv 1\pmod 3$
Mà $2019^{2020}\equiv 0\pmod 3$
Do đó pt vô nghiệm.
\(\left(x-12+y\right)^2+\left(y+4-x\right)^2=0\)
Tìm x;y
Giúp mình với!
(x-12+y)2 + (y+4-x)2=0
x-12+y=0 => x+y=12
y+4-x=0 =>y-x=-4
=>x=8 , y=4
vì (x-12+y)2 >0:(y+4-x)2 >0
=>x-12+y=y+4-x=0
=>x-12+x=y+4-y
=>2x-12=4
=>x=8 hoặc -8
thay x vào là ra y nha.
Tìm x,y biết:\(\left(x+\frac{1}{2}\right)^{100}+\left|7-\frac{1}{3}y\right|=0\)
Giúp mình với...
Ta có: \(\hept{\begin{cases}\left(x+\frac{1}{2}\right)^{100}\ge0;\forall x,y\\|7-\frac{1}{3}y|\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+\frac{1}{2}\right)^{100}+|7-3y|\ge0;\forall x,y\)
Do đó \(\left(x+\frac{1}{2}\right)^{100}+|7-3y|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{2}\right)^{100}=0\\|7-\frac{1}{3}y|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}=0\\7-\frac{1}{3}y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{7}{3}\end{cases}}\)
Vậy ...
Nhầm nhé \(y=21\)
21. cho hàm số \(y=\left(1+m\right)x^2-2\left(m-1\right)x+m-3\) \(\left(P_m\right)\). chứng tỏ rằng \(\left(P_m\right)\) luôn đi qua 1 điểm cố định và tìm tọa độ cố định đó
(P): \(y=\left(1+m\right)x^2-2\left(m-1\right)x+m-3\)
\(=x^2+mx^2-2mx+2x+m-3\)
\(=m\left(x^2-2x+1\right)+x^2+2x-3\)
\(=m\left(x-1\right)^2+x^2+2x-3\)
Tọa độ điểm cố định mà (Pm) luôn đi qua là:
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=x^2+2x-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-1=0\\y=x^2+2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2-3=0\end{matrix}\right.\)
giải hpt: a,\(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^4+y^4+x^2y^2=21\end{matrix}\right.\) b,\(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=7\\x^2-y^2+\dfrac{1}{x^2}-\dfrac{1}{y^2}=21\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2+xy\right)\left(x^2+y^2-xy\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^2+y^2-xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\xy=2\end{matrix}\right.\)
\(\Rightarrow x^2+\left(\dfrac{2}{x}\right)^2=5\)
\(\Leftrightarrow x^4-5x^2=4=0\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}\right)^2-\left(y+\dfrac{1}{y}\right)^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)\left(x+\dfrac{1}{x}-y-\dfrac{1}{y}\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\x+\dfrac{1}{x}-y-\dfrac{1}{y}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=5\\y+\dfrac{1}{y}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+1=0\\y^2-2y+1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(\left\{{}\begin{matrix}x\left(x+21\right)+y\left(x-33\right)=2\left(y^2+50\right)\\\sqrt{x+2}+2\sqrt{y+11}=\sqrt{\left(4y-x+14\right)^3}\end{matrix}\right.\)