Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ánh Dương
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 10 2019 lúc 13:50

\(x^3+3x^2+3x+1+y^3+3y^3+3y+1+x+y+2=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)+1\right)=0\)

\(\Leftrightarrow x+y+2=0\)

(phần trong ngoặc \(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\frac{\left(y+1\right)^2}{4}+\frac{3\left(y+1\right)^2}{4}+1\)

\(=\left(x+1-\frac{y+1}{4}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\) luôn dương)

\(\Rightarrow x+y=-2\)

\(xy>0\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x>0\\-y>0\end{matrix}\right.\)

Ta có: \(\frac{1}{-x}+\frac{1}{-y}\ge\frac{4}{-\left(x+y\right)}=2\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\le-2\) (đpcm)

Dấu "=" xảy ra khi và chỉ khi \(x=y=-1\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
21 tháng 10 2019 lúc 13:55

2/ \(x;y;z\ne0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\) dù trường hợp nào thì thay vào ta đều có \(B=0\)

3/ \(\Leftrightarrow mx-2x+my-y-1=0\)

\(\Leftrightarrow m\left(x+y\right)-\left(2x+y+1\right)=0\)

Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà d đi qua

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=0\\2x_0+y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)

Vậy d luôn đi qua \(A\left(-1;1\right)\) với mọi m

Khách vãng lai đã xóa
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 10 2023 lúc 14:42

a: \(y'< 0\)

=>\(\left(x-3\right)^3\cdot\left(x-1\right)^{22}\cdot\left(-3x-6\right)^7< 0\)

=>\(\left(x-3\right)\left(-3x-6\right)< 0\)

=>\(\left(x+2\right)\left(x-3\right)>0\)

=>\(\left[{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)

y'>0

=>\(\left(x+2\right)\left(x-3\right)< 0\)

=>\(-2< x< 3\)

y'=0

=>\(\left[{}\begin{matrix}x-3=0\\x-1=0\\-3x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)

Ta có bảng xét dấu sau:

x\(-\infty\)       -2                    1               3               +\(\infty\)
y'-              0        +          0      +       0              -

Vậy: Hàm số đồng biến trên các khoảng \(\left(-2;1\right);\left(1;3\right)\)

Hàm số nghịch biến trên các khoảng \(\left(-\infty;-2\right);\left(3;+\infty\right)\)

b: y'<0

=>\(\left(4x-3\right)^3\cdot\left(x^2-1\right)^{21}\left(3x-9\right)^7< 0\)

=>\(\left(4x-3\right)\left(3x-9\right)\left(x^2-1\right)< 0\)

=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)< 0\)

TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< \dfrac{3}{4}\)

TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1< x< 3\)

y'>0

=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)>0\)

TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\-1< x< 1\end{matrix}\right.\Leftrightarrow\dfrac{3}{4}< x< 1\)

Ta sẽ có bảng xét dấu sau đây:

x\(-\infty\)       -1        3/4        1       3          +\(\infty\)
y'+                   0   -     0     +   0   -   0             +

Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;-1\right);\left(\dfrac{3}{4};1\right);\left(3;+\infty\right)\)

Hàm số nghịch biến trên các khoảng \(\left(-1;\dfrac{3}{4}\right);\left(1;3\right)\)

Mai Ngoc
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 21:12

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

Akai Haruma
5 tháng 10 2021 lúc 21:30

1a. Đề lỗi

1b. 

PT $\Leftrightarrow (x+2)^2+(y-1)^2=25$

$\Leftrightarrow (x+2)^2=25-(y-1)^2\leq 25$

$(x+2)^2$ là scp không vượt quá $25$ nên có thể nhận các giá trị $0,1,4,9,16,25$

Nếu $(x+2)^2=0\Rightarrow (y-1)^2=25$

$\Rightarrow (x,y)=(-2, 6), (-2, -4)$
Nếu $(x+2)^2=1\Rightarrow (y-1)^2=24$ không là scp (loại)

Nếu $(x+2)^2=4\Rightarrow (y-1)^2=21$ không là scp (loại)

Nếu $(x+2)^2=9\Rightarrow (y-1)^2=16$

$\Rightarrow (x,y)=(1, 5), (1, -3), (-5,5), (-5, -3)$

Nếu $(x+2)^2=25\Rightarrow (y-1)^2=0$

$\Rightarrow (x,y)=(3, 1), (-7, 1)$

Akai Haruma
5 tháng 10 2021 lúc 21:33

1c. 

Vì $x^2$ là scp nên $x^2\equiv 0,1\pmod 3$

$3(y-1)^2\equiv 0\pmod 3$

$\Rightarrow x^2+3(y-1)^2\equiv 0,1\pmod 3$

Mà $2021\equiv 2\pmod 3$
Do đó pt $x^2+3(y-1)^2=2021$ vô nghiệm

1d.

Ta thấy:

$(3x-1)^{2020}$ là scp không chia hết cho $3$ nên $(3x-1)^{2020}\equiv 1\pmod 3$

$18(y-2)^{2019}\equiv 0\pmod 3$

$\Rightarrow (3x-1)^{2020}+18(y-2)^{2019}\equiv 1\pmod 3$
Mà $2019^{2020}\equiv 0\pmod 3$
Do đó pt vô nghiệm.

Louis Pasteur
Xem chi tiết
Ngô Hoàng Thanh Vân
5 tháng 1 2017 lúc 21:06

(x-12+y)2 + (y+4-x)2=0

x-12+y=0 => x+y=12

y+4-x=0 =>y-x=-4

=>x=8 , y=4

nghiêm thùy dương
5 tháng 1 2017 lúc 21:58

vì (x-12+y)>0:(y+4-x)2 >0

=>x-12+y=y+4-x=0

=>x-12+x=y+4-y

=>2x-12=4

=>x=8 hoặc -8

thay x vào là ra y nha.

Lê Trần Hồng Phúc
Xem chi tiết
Lê Tài Bảo Châu
26 tháng 10 2019 lúc 13:41

Ta có: \(\hept{\begin{cases}\left(x+\frac{1}{2}\right)^{100}\ge0;\forall x,y\\|7-\frac{1}{3}y|\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+\frac{1}{2}\right)^{100}+|7-3y|\ge0;\forall x,y\)

Do đó \(\left(x+\frac{1}{2}\right)^{100}+|7-3y|=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{2}\right)^{100}=0\\|7-\frac{1}{3}y|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}=0\\7-\frac{1}{3}y=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{7}{3}\end{cases}}\)

Vậy ...

Khách vãng lai đã xóa
Lê Tài Bảo Châu
26 tháng 10 2019 lúc 13:42

Nhầm nhé \(y=21\)

Khách vãng lai đã xóa
Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 12 2023 lúc 7:41

(P): \(y=\left(1+m\right)x^2-2\left(m-1\right)x+m-3\)

\(=x^2+mx^2-2mx+2x+m-3\)

\(=m\left(x^2-2x+1\right)+x^2+2x-3\)

\(=m\left(x-1\right)^2+x^2+2x-3\)

Tọa độ điểm cố định mà (Pm) luôn đi qua là:

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=x^2+2x-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-1=0\\y=x^2+2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2-3=0\end{matrix}\right.\)

em ơi
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 2 2021 lúc 17:13

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2+xy\right)\left(x^2+y^2-xy\right)=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^2+y^2-xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\xy=2\end{matrix}\right.\)

\(\Rightarrow x^2+\left(\dfrac{2}{x}\right)^2=5\)

\(\Leftrightarrow x^4-5x^2=4=0\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
28 tháng 2 2021 lúc 17:15

b.

ĐKXĐ: ...

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}\right)^2-\left(y+\dfrac{1}{y}\right)^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)\left(x+\dfrac{1}{x}-y-\dfrac{1}{y}\right)=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\x+\dfrac{1}{x}-y-\dfrac{1}{y}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=5\\y+\dfrac{1}{y}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+1=0\\y^2-2y+1=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Thắng
Xem chi tiết
Thắng
27 tháng 2 2022 lúc 22:24

trả lời giúp em