Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Nguyễn Hà Vy
Xem chi tiết
Vũ Quang Huy
9 tháng 3 2022 lúc 15:54

lỗi

Keiko Hashitou
9 tháng 3 2022 lúc 15:54

lỗi

Hải Vân
9 tháng 3 2022 lúc 15:55

bn đăng lại đi, lỗi

Bình Trần Thị
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 6 2018 lúc 17:32

Đáp án D

Tuấn Khải Vương
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 9 2019 lúc 16:55

Đặt hệ trục tọa độ Oxy vào cổng với gốc tọa độ trùng điểm chính giữa hai chân cổng

Gọi 2 chân cổng là A và B, điểm cao nhất là C, điểm có độ cao 43m là D

\(\Rightarrow A\left(-81;0\right)\) ; \(B\left(81;0\right)\); \(D\left(71;43\right)\)

Phương trình parabol có dạng \(y=ax^2+bx+c\)

Thay tọa độ A; B; C vào ta được hệ:

\(\left\{{}\begin{matrix}81^2.a-81b+c=0\\81^2a+81b+c=0\\71^2a+71b+c=43\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{43}{1520}\\b=0\\c=\frac{81^2.43}{1520}\end{matrix}\right.\)

\(\Rightarrow\) Độ cao cổng cũng là tung độ đỉnh C

\(\Rightarrow h=y_C=c\simeq185,6\left(m\right)\)

Bùi Minh Châu
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
27 tháng 9 2023 lúc 0:26

Gắn hệ trục Oxy vào chiếc cổng, gọi chiều cao của cổng là ta vẽ lại parabol như dưới đây:

Phương trình parabol mô phỏng cổng có dạng \({y^2} = 2px\)

Theo giả thiết \(AB = 2{y_A} = 192 \Rightarrow {y_A} = 96,OC = h \Rightarrow M\left( {h - 2;95,5} \right),A\left( {h;96} \right)\)

Thay tọa độ các điểm \(M\left( {h - 2;95,5} \right),A\left( {h;96} \right)\) vào phương trình \({y^2} = 2px\) ta có:

\(\left\{ \begin{array}{l}95,{5^2} = 2p\left( {h - 2} \right)\\{96^2} = 2ph\end{array} \right. \Rightarrow \left\{ \begin{array}{l}p = \frac{{383}}{{16}}\\h \simeq 192,5\end{array} \right.\)

Vậy chiều cao của cổng gần bằng 192,5 m

Trần Thanh Bình
Xem chi tiết
Lài Dương Thị
7 tháng 12 2022 lúc 19:42

làm chi tiết đi bạn giúp mik vs

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
27 tháng 9 2023 lúc 0:16

Vẽ lại parabol và chọn hệ trục tọa độ như hình dưới

Gọi phương trình của parabol là \({y^2} = 2px\)

Ta có chiều cao của cổng \(OH = BK = 10\), chiều rộng tại chân cổng \(BD = 2BH = 5\)

Vậy điểm có tọa độ là \(B\left( {10;\frac{5}{2}} \right)\)

Thay tọa độ điểm vào phương trình parabol ta có:

\({\left( {\frac{5}{2}} \right)^2} = 2p.10 \Rightarrow p = \frac{5}{{16}}\), suy ra phương trình parabol có dạng \({y^2} = \frac{5}{8}x\)

Thay \(x = 2\) vào phương trình \({y^2} = \frac{5}{8}x\) ta tìm được \(y = \frac{{\sqrt 5 }}{2}\)

Vậy bề rộng của cổng tại chỗ cách đỉnh 2 m là \(\sqrt 5 \) m

Nghi Phạm
Xem chi tiết