Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
27 tháng 9 2023 lúc 19:46

a)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=-x^2+4x-3 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

 

b)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=x^2+2 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

 

c)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=1/2x^2+x+1 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

 

d)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=x^2-4x+4 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 22:59

Tham khảo:

a)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = {x^2} - 4x + 3\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 3 =  - 1.\)

+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay lên trên vì \(a = 1 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).

Ta vẽ được đồ thị như hình dưới.

b)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - {x^2} - 4x + 5\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.( - 1)}} =  - 2;{y_S} =  - {( - 2)^2} - 4.( - 2) + 5 = 9.\)

+ Có trục đối xứng là đường thẳng \(x =  - 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 1 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).

Ta vẽ được đồ thị như hình dưới.

c) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = {x^2} - 4x + 5\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 5 = 1.\)

+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay lên trên vì \(a = 1 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).

Ta vẽ được đồ thị như hình dưới.

d)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - {x^2} - 2x - 1\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 2)}}{{2.( - 1)}} =  - 1;{y_S} =  - {( - 1)^2} - 2.( - 1) - 1 = 0\)

+ Có trục đối xứng là đường thẳng \(x =  - 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 1 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua gốc tọa độ (0; -1).

Ta vẽ được đồ thị như hình dưới.

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
23 tháng 9 2023 lúc 23:47

Tham khảo:

a) \(y = {x^2} - 3x - 4\)

Đồ thị hàm số có đỉnh \(I\left( {\dfrac{3}{2}; - \dfrac{{25}}{4}} \right)\)

Trục đối xứng là \(x = \dfrac{3}{2}\)

Giao điểm của parabol với trục tung là (0;-4)

Giao điểm của parabol với trục hoành là (-1;0) và (4;0)

Điểm đối xứng với điểm (0;-4) qua trục đối xứng \(x = \frac{3}{2}\) là (3;-4)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

b) \(y = {x^2} + 4x + 4\)

Đồ thị hàm số có đỉnh \(I\left( { - 2;0} \right)\)

Trục đối xứng là \(x =  - 2\)

Giao điểm của parabol với trục tung là (0;4)

Giao điểm của parabol với trục hoành là I(-2;0)

Điểm đối xứng với điểm (0;4) qua trục đối xứng \(x =  - 2\) là (-4;4)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

c) \(y =  - {x^2} + 2x - 2\)

Đồ thị hàm số có đỉnh \(I\left( {1; - 1} \right)\)

Trục đối xứng là \(x = 1\)

Giao điểm của parabol với trục tung là (0;-2)

Điểm đối xứng với điểm (0;-2) qua trục đối xứng \(x = 1\) là (2;-2)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 22:54

Tham khảo:

a)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = 2{x^2} + 4x - 1\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 4}}{{2.2}} =  - 1;{y_S} = 2.{( - 1)^2} + 4.( - 1) - 1 =  - 3.\)

+ Có trục đối xứng là đường thẳng \(x =  - 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

 

+ Bề lõm quay lên trên vì \(a = 2 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua điểm có tọa độ (0; -1).

Ta vẽ được đồ thị như hình dưới.

b) 

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - {x^2} + 2x + 3\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 2}}{{2.( - 1)}} = 1;{y_S} =  - {1^2} + 2.1 + 3 = 4.\)

+ Có trục đối xứng là đường thẳng \(x = 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 1 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).

Ta vẽ được đồ thị như hình dưới.

c)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - 3{x^2} + 6x\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 6}}{{2.( - 3)}} = 1;{y_S} =  - {3.1^2} + 6.1 = 3\)

+ Có trục đối xứng là đường thẳng \(x = 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 3 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng 0, tức là đồ thị đi qua gốc tọa độ (0; 0).

Ta vẽ được đồ thị như hình dưới.

d)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = 2{x^2} - 5\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.2}} = 0;{y_S} = {2.0^2} - 5 =  - 5.\)

+ Có trục đối xứng là đường thẳng \(x = 0\) (trùng với trục Oy);

+ Bề lõm quay lên trên vì \(a = 2 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng -5, tức là đồ thị đi qua điểm có tọa độ (0; -5).

Ta vẽ được đồ thị như hình dưới.

học giỏi nhất web
Xem chi tiết
Lê Anh Hoàng
Xem chi tiết
Bảo Trần Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2021 lúc 22:46

Câu 1: 

y=-3x+2

a=-3; b=2

y=5x

a=5; b=0

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
23 tháng 9 2023 lúc 11:34

Tham khảo:

a) Hàm số có \(a = 2,b =  - 6;c=4 \) \(\Rightarrow  - \frac{b}{{2a}} =  - \frac{{ - 6}}{{2.2}} = \frac{3}{2}; y\left( {\frac{3}{2}} \right) = 2{\left( {\frac{3}{2}} \right)^2} - 6.\frac{3}{2} + 4 =  - \frac{1}{2} \)

+ Đồ thị hàm số có đỉnh \(I\left( {\frac{3}{2}; - \frac{1}{2}} \right)\)

+ Trục đối xứng là \(x = \frac{3}{2}\)

+ Giao điểm của parabol với trục tung là (0;4)

+ Giao điểm của parabol với trục hoành là (2;0) và (1;0)

+ Điểm đối xứng với điểm (0;4) qua trục đối xứng \(x = \frac{3}{2}\) là \(\left( {3;4} \right)\)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

b) Hàm số có \(a = -3,b =  - 6;c=-3 \) \(\Rightarrow  - \frac{b}{{2a}} =  - \frac{{ - 6}}{{2.(-3)}} =-1 ; y(-1) = - 3{(-1)^2} - 6.(-1) - 3 = 0 \)

+ Đồ thị hàm số có đỉnh \(I\left( { - 1;0} \right)\)

+ Trục đối xứng là \(x =  - 1\)

+ Giao điểm của parabol với trục tung là (0;-3)

+ Giao điểm của parabol với trục hoành là \(I\left( { - 1;0} \right)\)

+ Điểm đối xứng với điểm (0;-3) qua trục đối xứng \(x =  - 1\) là (-2;-3)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

An Nguyễn
Xem chi tiết