Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lại Nguyễn Gia Quỳnh
Xem chi tiết
Minh Hiếu
13 tháng 10 2023 lúc 20:10

a) \(A=2\left(1+2+2^2+...+2^{2022}+2^{2023}\right)⋮2\left(đpcm\right)\)

b) \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2023}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{2023}.3\)

\(=3\left(2+2^3+...+2^{2023}\right)⋮3\left(đpcm\right)\)

Phạm Quang Lộc
13 tháng 10 2023 lúc 20:25

A) A=2+22+23+...+22023+22024

A=2(1+2+22+...+22022+22023)⋮2

B) A=2+22+23+...+22023+22024

A=(2+22)+...+(22023+22024)

A=2(1+2)+...+22023(1+2)

A=2.3+...+22023.3

A=3(2+...+22023)⋮3

Lê Nhật Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2023 lúc 20:08

a: \(A=1+2+2^2+...+2^{2023}\)

=>\(2A=2+2^2+2^3+...+2^{2024}\)

=>\(2A-A=2^{2024}+2^{2023}+...+2^2+2-2^{2023}-2^{2022}-...-2^2-2-1\)

=>\(A=2^{2024}-1\)

b: \(A=\left(1+2\right)+2^2+2^3+...+2^{2023}\)

\(=3+2^2\left(1+2\right)+...+2^{2022}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{2022}\right)⋮3\)

Mỹ ánh
Xem chi tiết
Kiều Vũ Linh
26 tháng 12 2022 lúc 8:26

a) A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²

2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³

A = 2A - A

= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²)

= 2²⁰²³ - 2⁰

= 2²⁰²³ - 1

Vậy A = B

b) A = 2021 . 2023

= (2022 - 1).(2022 + 1)

= 2022.(2022 + 1) - 2022 - 1

= 2022² + 2022 - 2022 - 1

= 2022² - 1 < 2022²

Vậy A < B

Tô Trung Hiếu
Xem chi tiết
Lương Thị Vân Anh
25 tháng 7 2023 lúc 14:38

Ta có \(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)

\(2A=1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\)

\(2A-A=\left(1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\)\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\)

Đặt B = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)

2B = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)

2B - B = \(\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)B = 2 - \(\dfrac{1}{2^{2022}}\)

Suy ra  A = 2 - \(\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\) < 2

Vậy A < 2

Phạm Quang Lộc
25 tháng 7 2023 lúc 14:32

\(A=\dfrac{1}{2}+\dfrac{2}{2^{2}}+\dfrac{3}{2^{3}}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)

\(2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2\)

 

 

Phạm Quang Lộc
25 tháng 7 2023 lúc 14:34

Sửa:

$2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{20 23}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2$
Phan Lâm Thanh Trúc
Xem chi tiết
Kiều Vũ Linh
9 tháng 1 lúc 13:58

Bài 1

a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴

S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)

= 2²⁰²⁴ - 1

b) B = 2²⁰²⁴

B - 1 = 2²⁰²⁴ - 1 = S

B = S + 1

Vậy B > S

a,

\(S=1+2+2^2+...+2^{2023}\)

\(2S=2+2^2+2^3+...+2^{2024}\)

\(\Rightarrow S=2^{2024}-1\)

b.

Do \(2^{2024}-1< 2^{2024}\)

\(\Rightarrow S< B\)

2.

\(H=3+3^2+...+3^{2022}\)

\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)

\(\Rightarrow3H-H=3^{2023}-3\)

\(\Rightarrow2H=3^{2023}-3\)

\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)

Kiều Vũ Linh
9 tháng 1 lúc 14:05

Bài 2

H = 3 + 3² + 3³ + ... + 3²⁰²²

⇒ 3H = 3² + 3³ + 3⁴ + ... + 3²⁰²³

⇒2H = 3H - H

= (3² + 3³ + 3⁴ + ... + 3²⁰²³) - (3 + 3² + 3³ + ... + 3²⁰²²)

= 3²⁰²³ - 3

⇒ H = (3²⁰²³ - 3) : 2

Hoàng Thảo Hà
Xem chi tiết

   S       =          1 + 2 + 22 + ... + 22023

2S       =           2 + 22+ 23+ .... + 22024

2S - S =   2 + 22 + 23 + ... + 22024 - (1 + 2 + 22 + 23 +...+ 22023)

S         = 2 + 22 + 23 +...+ 22024 - 1 - 2 - 22 - 23 - ... - 22023

S        =  22024 - 1 

 

đặng vũ hải lâm
Xem chi tiết
Ở đây có bán nỗi buồn
6 tháng 7 2021 lúc 13:38

$\dfrac24$
vì $\dfrac24=\dfrac{2 \times 1}{2 \times 2}=\dfrac12$

Bùi Thị Trang
Xem chi tiết
Edogawa Conan
30 tháng 6 2021 lúc 11:57

hai * cuối là 00 vì số nào nhân với 25 thì số hàng chục và đơn vị là 00,còn dấu * thứ 3 là số 7

Edogawa Conan
30 tháng 6 2021 lúc 12:43

Ta có:21x22x23x24x25=7x3x22x23x3x8x25

Khi nhân 25 với 1 số chẵn thì tích sẽ có tận cùng là 2 chữ số 0

nên ta được 63*5600

Ta thấy tích trên chia hết cho 9(3x3) nên 6+3+*+5+6+0+0chia hết cho 9

nên *=7

Vậy tích là 6375600

dưdw
Xem chi tiết
qlamm
17 tháng 3 2022 lúc 13:10

D

A

💠꧁༺๖ۣۜYuikoshi༻꧂💠
17 tháng 3 2022 lúc 13:18

22
DD
23
A