Gọi BE và CF là hai đường phân giác của tam giác ABC cân tại A. Chứng minh BE = CF.
giúp mik với
Câu 4. (1,5điểm) Cho tam giác abc
cân tại A có BE và CF là các đường cao. Cho tam giác ABC cân tại A (góc A < 90 độ).
a) Chứng minh BE = CF.
b) Gọi H là giao điểm của BE và CF. Chứng minh BE + BF > BH + CH.
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
góc BAE chung
Do đó: ΔABE=ΔACF
=>BE=CF
b:
Sửa đề Chứng minh BE+CF>BH+CH
BE>BH
CF>CH
=>BE+CF>BH+CH
Tam giác ABC có 2 đường phân giác là BE và CF. Giao điểm của BE và CF là I, BE=CF.
1, Chứng minh tam giác ABC cân tại A.
2, Tam giác AEF là tam giác gì?
3, Chứng minh rằng: AI đi qua trung điểm BC.
JUNPHAM2018 đúng rồi !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho tam giác ABC cân tại A kẻ BE là phân giác của góc B và CF là phân giác góc C (E thuộc AC, F thuộc AC)
a)chứng minh AE = CF
b)chứng minh EF//BC
c)Gọi I là giao điểm của BE và CF chúng minh AI thuộc BC
d) tam giác BIC là tam giác gì?
a: Xét ΔAEB và ΔAFC có
\(\widehat{ABE}=\widehat{ACF}\)
AB=AC
\(\widehat{BAC}\) chung
Do đó: ΔAEB=ΔAFC
Suy ra: AE=AF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: Xét ΔFBI và ΔECI có
\(\widehat{FBI}=\widehat{ECI}\)
FB=EC
\(\widehat{BFI}=\widehat{CEI}\)
Do đó: ΔFBI=ΔECI
Suy ra: IB=IC
hay I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AI\(\perp\)BC
d: Xét ΔBIC có IB=IC
nên ΔBIC cân tại I
Cho tam giác ABC cân tại A, đường phân giác CF. Trên cạnh AC lấy điểm E sao cho
AE = AF. Gọi D là trung điểm của BC.
a) Chứng minh AD là đường phân giác của ∆ABC
b) Chứng minh ∆ABE = ∆ACF
c) Chứng minh ba đường thẳng AD, BE, CF đồng quy
a: ΔABC can tại A
mà AD là trung tuyến
nên AD là phân giác
b: Xet ΔABE và ΔACF có
AB=AC
góc BAE chung
AE=AF
=>ΔABE=ΔACF
=>góc ABE=góc ACF=1/2*góc ABC
=>BE là phân giác của góc ABC
c: Xet ΔABC có
BE,CF,AD là phân giác
=>BE,CF,AD đồng quy
Cho tam giác ABC cân tại A có đường phân giác AD.
a) Chứng minh tam giác ADB = tam giác ADC, điểm D là gì.
b) Chứng minh đường phân giác AD và hai đường trung tuyến BE, CF của tam giác tam giác ABC đồng qui tại một điểm
Cho tam giác ABC cân tại A ( góc A < 40 độ) có BM,CN là hai đường phân giác của tam giác ABC.
a) Chứng minh BCMN là hình thang cân
b) BE,CF là hai đường cao của tam giác ABC. Chứng minh EMNF là hình thang cân.
Cho tam giác ABC cân tại A. Phân giác của góc B và C cắt AC và AB lần lượt tại E và F.
a) Chứng minh BE = CF
b) Gọi I là giao điểm của BE và CF. Chứng minh AI là phân giác của góc A
Giúp mình với, mình đang cần gấp
cho tam giác ABC, kẻ BE vuông góc AC và CF vuông gọc AB, cho BE = CF. Gọi O là giao điểm của BE và CF
a) Chứng minh tam giác BEC = tam giác CFB
b) Chứng minh tam giác ABC cân
c) Chứng minh EF song song BC
D) Chứng minh AO là đường trung trực của BC
Cho tam giác ABC cân tại A (góc A nhọn). kẻ BE vuông AC, CF vuông AB (E thuộc AC, F thuộc AB).
a, Chứng minh tam giác ABC = tam giác ACF.
b, gọi M là giao điểm của BE và CF, chứng minh AM là tia phân giác góc BAC
Giúp em với ạ em đg cần gấp. Cảm mơn mn trc
a: Xet ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔAFM vuông tại F và ΔAEM vuông tại E có
AM chung
AF=AE
Do đó: ΔAFM=ΔAEM
Suy ra: \(\widehat{BAM}=\widehat{CAM}\)
hay AM là tia phân giác của góc BAC