Cho cot x = 2 . Tính giá trị của biểu thức B= sin^ 2 x-2 sin x.cos x-1/5cos^2 x + sin^2 x - 3
Cho cotx=2 . Tính giá trị của biểu thức B= sin^ 2 x-2 sin x.cos x-1 / 5cos^2 x + sin^2 x - 3
cotx=2
=>cosx=2*sin x
\(1+cot^2x=\dfrac{1}{sin^2x}\)
=>\(\dfrac{1}{sin^2x}=1+4=5\)
=>\(sin^2x=\dfrac{1}{5}\)
\(B=\dfrac{sin^2x-2\cdot sinx\cdot2\cdot sinx-1}{5\cdot4sin^2x+sin^2x-3}=\dfrac{-3sin^2x-1}{21sin^2x-3}\)
\(=\dfrac{-\dfrac{3}{5}-1}{\dfrac{21}{5}-3}=-\dfrac{8}{5}:\dfrac{6}{5}=-\dfrac{4}{3}\)
\(cotx=2\Rightarrow tanx=\dfrac{1}{2}\)
\(B=\dfrac{sin^2x-2sinx.cosx-1}{5cos^2x+sin^2x-3}\)
\(\Leftrightarrow B=\dfrac{tan^2x-2tanx-\dfrac{1}{cos^2x}}{5+tan^2x-\dfrac{3}{cos^2x}}\)
\(\Leftrightarrow B=\dfrac{tan^2x-2tanx-1-tan^2x}{5+tan^2x-3-3tan^2x}\)
\(\Leftrightarrow B=\dfrac{-2tanx-1}{2-2tan^2x}\)
\(\Leftrightarrow B=\dfrac{-2.\dfrac{1}{2}-1}{2-2.\dfrac{1}{4}}=\dfrac{-2}{\dfrac{3}{2}}=-\dfrac{4}{3}\)
1)tính giá trị biểu thức:
p=tan 37 °+sin^2 28 °-3tan 52 °/cot 28 °+sin^2 62 °-cot 53 °
2) tìm góc nhọn a(alpha) biết sin a = cos a.
3) Cho biết x=3. Tính giá trị của các biểu thức sau :
a/ A=32018.cot2017x
b/ B= sin2x + 2 sin x . cos x - 5 cos2x
c/ D=1-(sin x + cos x)2 / cos2x
(mn ơi ai biết giúp mjh vs ạ) 😭
\(tana-cota=2\sqrt{3}\Rightarrow\left(tana-cota\right)^2=12\)
\(\Rightarrow\left(tana+cota\right)^2-4=12\Rightarrow\left(tana+cota\right)^2=16\)
\(\Rightarrow P=4\)
\(sinx+cosx=\dfrac{1}{5}\Rightarrow\left(sinx+cosx\right)^2=\dfrac{1}{25}\)
\(\Rightarrow1+2sinx.cosx=\dfrac{1}{25}\Rightarrow sinx.cosx=-\dfrac{12}{25}\)
\(P=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}=\dfrac{1}{sinx.cosx}=\dfrac{1}{-\dfrac{12}{25}}=-\dfrac{25}{12}\)
Chứng minh các đẳng thức sau :
a) (sin x + cos x)2 = 1 + 2sin x.cos x
b) sin4 x + cos4 x = 1 - 2sin2 x.cos2 x
c) tan2 x - sin2 x = tan2 x.sin2 x
d) sin6 x + cos6 x = 1 - 3sin2 x.cos2 x
e) sin x.cos x (1 + tan x)(1 + cot x) = 1 + 2sin x .cos x
a)
\((\sin x+\cos x)^2=\sin ^2x+2\sin x\cos x+\cos ^2x\)
\(=(\sin ^2x+\cos ^2x)+2\sin x\cos x=1+2\sin x\cos x\)
b)
\(\sin ^4x+\cos ^4x=\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x-2\sin ^2\cos ^2x\)
\(=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x\)
\(=1-2\sin ^2x\cos ^2x\)
c)
\(\tan ^2x-\sin ^2x=(\frac{\sin x}{\cos x})^2-\sin ^2x\)
\(=\sin ^2x\left(\frac{1}{\cos ^2x}-1\right)=\sin ^2x. \frac{1-\cos ^2x}{\cos ^2x}=\sin ^2x.\frac{\sin ^2x}{\cos ^2x}\)
\(=\sin ^2x\left(\frac{\sin x}{\cos x}\right)^2=\sin ^2x\tan ^2x\)
d)
\(\sin ^6x+\cos ^6x=(\sin ^2x)^3+(\cos ^2x)^3\)
\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)\)
\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x\)
\(=(\sin ^4x+\cos ^4x)-\sin ^2x\cos ^2x=1-2\sin ^2x\cos ^2x-\sin ^2x\cos ^2x\)
\(=1-3\sin ^2x\cos ^2x\) (theo kq phần b)
e)
\(\sin x\cos x(1+\tan x)(1+\cot x)=\sin x\cos x(1+\frac{\sin x}{\cos x})(1+\frac{\cos x}{\sin x})\)
\(=\sin x\cos x.\frac{\cos x+\sin x}{\cos x}.\frac{\sin x+\cos x}{\sin x}\)
\(=(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x\)
\(=1+2\sin x\cos x\)
-------------
P/s: Nói chung cứ bám vào công thức \(\sin ^2x+\cos ^2x=1\)
Tính giá trị biểu thức
B=cos4x + sin2x.cos2x + sin2x
C=sin2a.sin2b + sin2a.cos2b + cos2a
Cho biết tan x = 3. Tính giá trị của các biểu thức sau:
a) A=32018.cot2017x
b) B=sin2x + 2 sin x. cos x - 5 cos2x
c) D=1-(sin x + cos x)2 / cos2x
\(tan^2x+cot^2x=2=2.tanx.cotx\)
\(\Leftrightarrow tan^2x+cot^2x-2tanx.cotx=0\)
\(\Leftrightarrow\left(tanx-cotx\right)^2=0\Leftrightarrow tanx=cotx=\dfrac{1}{tanx}\)
\(\Leftrightarrow tanx=\pm1\)
\(P=\dfrac{1}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{1+sinx-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{sin^2x+sinx}{cosx\left(1+sinx\right)}\)
\(=\dfrac{sinx\left(1+sinx\right)}{cosx\left(1+sinx\right)}=tanx=\pm1\)
Tính giá trị biểu thức:
M= sin x.cos x + \(\dfrac{sin^2x}{1+cotx}\) + \(\dfrac{cos^2x}{1+tanx}\) với 0độ<x<90độ
\(M=sinx.cosx+\dfrac{sin^2x}{1+cotx}+\dfrac{cos^2x}{1+tanx}\)
\(=sinx.cosx+\dfrac{sin^2x}{\dfrac{cosx+sinx}{sinx}}+\dfrac{cos^2x}{\dfrac{cosx+sinx}{cosx}}\)
\(=sinx.cosx+\dfrac{sin^3x+cos^3x}{cosx+sinx}\)
\(=sinx.cosx+\dfrac{\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{cosx+sinx}\)
\(=sinx.cosx+sin^2x+cos^2x-sinx.cosx\)
\(=sin^2x+cos^2x=1\)