Rút gọn các biểu thức sau a)(căn1-4a+4a^2 ) -2a b)x-2y-căn x^2-4xy+4y^2
Rút gọn các biểu thức sau:
a) \(A=\sqrt{1-4a+4a^2}-2a\)
b) \(B=x-2y-\sqrt{x^2-4xy+4y^2}\)
c) \(C=2x-1-\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
a)=1-4a
b) = 2x - 4y
c) = 2x - 2 (nếu x>5)
=2x(nếu x<5)
a) A= 1 - 4a
b) B=2x-4y
c) C= 2x-2 (nếu x>5)
= 2x (nếu x< 5)
Rút gọn các biểu thức sau:
a, \(\sqrt{1-4a+4a^2}\) -2a với a ≥ \(\frac{1}{2}\)
b, x- 2y- \(\sqrt{x^2-4xy+4y^2}\) với x<2y
c, x2 + \(\sqrt{x^4-8x^2+16}\) với x2<4
Lời giải:
a)
\(\sqrt{1-4a+4a^2}-2a=\sqrt{1-2.2a+(2a)^2}-2a\)
\(=\sqrt{(2a-1)^2}-2a=|2a-1|-2a=(2a-1)-2a=-1\)
(do $a\geq \frac{1}{2}$ nên $|2a-1|=2a-1$)
b)
\(x-2y-\sqrt{x^2-4xy+4y^2}=x-2y-\sqrt{(x-2y)^2}=x-2y-|x-2y|\)
\(=x-2y-(2y-x)=2(x-2y)\)
(do $x< 2y$ nên $|x-2y|=-(x-2y)=2y-x$)
c)
\(x^2+\sqrt{x^4-8x^2+16}=x^2+\sqrt{(x^2)^2-2.4.x^2+4^2}\)
\(=x^2+\sqrt{(x^2-4)^2}=x^2+|x^2-4|=x^2+(4-x^2)=4\)
(do $x^2< 4$ nên $|x^2-4|=4-x^2$)
Bài 1: Rút gọn biểu thức
a) \(\left|x-2\right|+\dfrac{\sqrt{x^2-4x+4}}{x-2}\)
b) \(\sqrt{1-4a+4a^2}-2a\)
c) \(x-2y-\sqrt{x^2-4xy+4y^2}\)
d) \(x^2+\sqrt{x^4-8x^2+16}\)
Rút gọn các biểu thức sau:
a) \(\sqrt{1-4a+4a^2}-2a\)
b) \(x-2y-\sqrt{x^2-4xy+4y^2}\)
c) \(x^2+\sqrt{x^4-8x^2+16}\)
d) \(2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}\)
e) \(\frac{\sqrt{x^4-4x^2+4}}{x^2-2}\)
f) \(\sqrt{\left(x-4\right)^2}+\frac{x-4}{\sqrt{x^2}-8x+16}\)
Giúp em với mọi người ơi!!! Pls!
\(a,\sqrt{1-4a+4a^2}-2a\)
\(=\sqrt{\left(1-2a\right)^2}-2a\)
\(=1-2a-2a\)
\(=1-4a\)
\(b,x-2y-\sqrt{x^2-4xy+4y^2}\)
\(=x-2y-\sqrt{\left(x-2y\right)^2}\)
\(=x-2y-\left(x-2y\right)\)
\(=x-2y-x+2y\)
\(=0\)
\(c,x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\sqrt{\left(x^2-4\right)^2}\)
\(=x^2+x^2-4\)
\(=2x^2-4\)
Các câu còn lại tương tự nha
\(a,\sqrt{1-4a+4a^2}-2a\)
\(=\sqrt{\left(1-2a\right)^2}-2a\)
\(=\left(1-2a\right)-2a\)
\(=1-4a\)
\(b,x-2y-\sqrt{x^2-4xy+4y^2}\)
\(=x-2y-\sqrt{\left(x-2y\right)^2}\)
\(=x-2y-\left(x-2y\right)\)
\(=x-2y-x+2y\)
\(=0\)
\(c,x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\sqrt{\left(x^2-2^2\right)^2}\)
\(=x^2+\left(x^2-4\right)\)
\(=x^2+x^2-4\)
\(=2x^2-4\)
\(d,2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}\)
\(=2x-1-\frac{\sqrt{\left(x-5\right)^2}}{x-5}\)
\(=2x-1-\frac{x-5}{x-5}\)
\(=2x-1-1\)
\(=2x-2\)
\(=2\left(x-1\right)\)
Rút gọn các biểu thức sau
a, \(\sqrt{1-4a+4a^2-2a}\)
b,\(x^2+\sqrt{x^4-8x^2+16}\)
1.Rút gọn biểu thức :
a) (x + 1)^3 + (x - 1)^3 + x^3 - 3x(x + 1)(x - 1)
b) (a + b + c)^2 + (a + b - c)^2 +(2a - b)^2
2. Tìm GTNN của biểu thức :
a) x^2 - 20x + 101
b) 4a^2 + 4a + 2
c) x^2 - 4xy +5y^2 + 10x - 22y + 28
3. Tìm GTLN của biểu thức :
a) A= 4x - x^2 + 3
b) B= x - x^2
Bài 1
a) \(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x-1\right)\left(x+1\right)\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1+x^3-3x\left(x^2-1\right)\)
\(=3x^3+6x-3x^3+3x=9x\)
b) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)
\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2ab-2bc-2ca+4a^2-4ab+b^2\)
\(=6a^2+3b^2+2c^2+4ab-4ab=6a^2+3b^2+2c^2\)
Bài 2
a) \(x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)
Dấu = xảy ra \(< =>\left(x-10\right)^2=0< =>x-10=0< =>x=10\)
b) \(4a^2+4a+2=4\left(a^2+a+\frac{1}{4}\right)+1=4\left(a+\frac{1}{2}\right)^2+1\ge1\)
Dấu = xảy ra \(< =>4\left(a+\frac{1}{2}\right)^2=0< =>a+\frac{1}{2}=0< =>a=-\frac{1}{2}\)
c) \(x^2-4xy+5y^2+10x-22y+28=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+y^2-2y+1+27\)
\(=\left(x-2y\right)^2+2.5.\left(x-2y\right)+25+\left(y-1\right)^2+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu = xảy ra \(< =>\hept{\begin{cases}y-1=0\\x-2y+5=0\end{cases}< =>\hept{\begin{cases}y=1\\x=-3\end{cases}}}\)
Bài 3
a) \(4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Dấu = xảy ra \(< =>\left(x-2\right)^2=0< =>x-2=0< =>x=2\)
b) \(x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu = xảy ra \(< =>\left(x-\frac{1}{2}\right)^2=0< =>x-\frac{1}{2}=0< =>x=\frac{1}{2}\)
X+2y - √(x^2-4xy +4y^2)^2 (x>=2y)
Rút gọn biểu thức
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé. Viết thế này khó đọc quá.
X+2y - √(x^2-4xy +4y^2)^2 (x>=2y) Rút gọn biểu thức
\(x+2y-\sqrt{x^2-4xy+4y^2}\)(sửa đề)
\(=x+2y-\sqrt{\left(x-2y\right)^2}\)
\(=x+2y-\left|x-2y\right|\)
\(=x+2y-\left(x-2y\right)\left(vì.x\ge2y\right)\)
\(=x+2y-x+2y\)
\(=4y\)
\(x+2y-\sqrt{x^2-4xy+4y^2}^2\)
\(=x+2y-\sqrt{\left(x-2y\right)^2}^2\)
\(=x+2y-\left(x-2y\right)^2\)
\(=x+2y-x^2+4xy-4y^2\)
Thu gọn các biểu thức sau:
a) (x+y)3 - (x-y)3 - 2y3
b) (x+2).(x2 - 2x+4) - (16-x3)
c) (2a+b). (4a2 - 4ab +b2) - (2a- b).(4a2+2ab+b2)