Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dinh Thi Thuy Trang
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 11 2021 lúc 11:49

\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)

HOW TO LÀM
Xem chi tiết
Khôi Bùi
23 tháng 4 2022 lúc 18:25

\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\) 

b.\(B=7-\left(x+3\right)^2\le7\forall x\)  " = " \(\Leftrightarrow x=-3\)

c.\(C=\left|2x-3\right|-13\ge-13\forall x\)  " = " \(\Leftrightarrow x=\dfrac{3}{2}\)

d.\(D=11-\left|2x-13\right|\le11\forall x\)  " = " \(\Leftrightarrow x=\dfrac{13}{2}\)

HITANDRUN(NEW)
Xem chi tiết
....
Xem chi tiết
Yeutoanhoc
5 tháng 6 2021 lúc 10:07

`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`

Yeutoanhoc
5 tháng 6 2021 lúc 10:09

`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`

Anh nguyen thi kim
Xem chi tiết
homaunamkhanh
Xem chi tiết
goteks Son
25 tháng 3 2020 lúc 10:00

lập bảng xét dấu đi

Khách vãng lai đã xóa
Tuyết Ly
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 10 2021 lúc 7:58

\(a,=x^2-8x+16+1=\left(x-4\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x=4\)

\(b,=\left(4x^2-12x+9\right)+4=\left(2x-3\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)

\(c,=\left(9x^2-2\cdot3\cdot\dfrac{1}{3}x+\dfrac{1}{9}\right)+\dfrac{26}{9}=\left(3x-\dfrac{1}{3}\right)^2+\dfrac{26}{9}\ge\dfrac{26}{9}\)

Dấu \("="\Leftrightarrow3x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{9}\)

Lê Hào 7A4
Xem chi tiết
αβγ δεζ ηθι
19 tháng 5 2022 lúc 14:44

a) A = x2 + 4x - 2 = x2 + 4x + 4 - 6 = (x + 2)2 - 6

(x + 2)2 ≥ 0 => A ≥ -6 => GTNN của A là -6, xảy ra khi x = 2

2611
19 tháng 5 2022 lúc 14:46

`a)A=x^2+4x-2`

   `A=x^2+4x+4-6=(x+2)^2-6`

Vì `(x+2)^2 >= 0 AA x`

`<=>(x+2)^2-6 >= -6 AA x`

   Hay `A >= -6 AA x`

Dấu "`=`" xảy ra`<=>(x+2)^2=0<=>x=-2`

Vậy `GTN N` của `A` là `-6` khi `x=-2`

________________________________________________

`b)B=2x^2-4x+3`

   `B=2(x^2-2x+3/2)`

   `B=2(x^2-2x+1)+1=2(x-1)^2+1`

Vì `2(x-1)^2 >= 0 AA x`

`<=>2(x-1)^2+1 >= 1 AA x`

  Hay `B >= 1 AA x`

Dấu "`=`" xảy ra `<=>(x-1)^2=0<=>x=1`

Vậy `GTN N` của `B` là `1` khi `x=1`

__________________________________________________

`c)C=x^2+y^2-4x+2y+5`

   `C=x^2-4x+4+y^2+2y+1`

   `C=(x-2)^2+(y+1)^2`

Vì `(x-2)^2 >= 0 AA x` và `(y+1)^2 >= 0 AA y`

  `=>(x-2)^2+(y+1)^2 >= 0 AA x,y`

 Hay `C >= 0 AA x,y`

Dấu "`=`" xảy ra`<=>{((x-2)^2=0),((y+1)^2=0):}`

                         `<=>{(x=2),(y=-1):}`

Vậy `GTN N` của `C` là `0` khi `x=2`,y=-1

My Hope
Xem chi tiết
@DanHee
24 tháng 7 2023 lúc 15:44

\(A=2x^2+2\sqrt{2}x+3\\ =2\left(x^2+\sqrt{2}x+\dfrac{3}{2}\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}+1\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}\right)+2\\ =2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\)

Ta có \(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2\ge0\forall x\)

\(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\ge2\forall x\)

Dấu bằng xảy ra khi : \(x+\dfrac{1}{\sqrt{2}}=0\\ \Rightarrow x=\dfrac{-\sqrt{2}}{2}\)

Vậy \(Min_A=2\) khi \(x=\dfrac{-\sqrt{2}}{2}\)

Thịnh
Xem chi tiết
Trên con đường thành côn...
3 tháng 9 2021 lúc 22:04

undefined

Nguyễn Lê Phước Thịnh
3 tháng 9 2021 lúc 22:05

\(x^2+2x+5\)

\(=\left(x+1\right)^2+4\ge4\forall x\)

\(\Leftrightarrow\dfrac{5}{x^2+2x+5}\le\dfrac{5}{4}\forall x\)

Dấu '=' xảy ra khi x=-1