(ko cần vẽ hình, giải chi tiết)
Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên đường thẳng d lấy điểm M khác điểm A. Qua điểm M vẽ hai tiếp tuyến ME và MF tới đường tròn (O) (E và F là các tiếp điểm). EF cắt OM và OA lần lượt tại H và K.
1) Chứng minh: H là trung điểm của EF.
2) Chứng minh rằng bốn điểm O, M, A, F cùng thuộc một đường tròn.
3) Chứng minh: \(OK.OA=R^2\)