cho B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) tìm x nguyên để B nhận giá trị nguyên
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\) và B=\(\dfrac{2}{\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3-5\sqrt{x}}{9-x}\) với x ≥ 0,x ≠ 9
Tìm các giá trị nguyên của để biểu thức nhận giá trị nguyên.
tìm các giá trị nguyên của x để biểu thức P=A.B nhận giá trị nguyên
Cho hai biểu thức:
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\); \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\) với \(x\ge0,x\ne4,x\ne9\)
a) Tính giá trị của A khi \(x=\dfrac{1}{4}\)
b) Rút gọn B.
c) Tìm giá trị nguyên của x để B nhận giá trị là số tự nhiên.
a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:
\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)
b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)
\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)
c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)
hay \(x\in\left\{16;25;64\right\}\)
Cho A = 1, B = \(\dfrac{1}{\sqrt{x}+3}\). Tìm x để A + B nhận giá trị nguyên
\(A+B=1+\dfrac{1}{\sqrt{x}+3}\left(đk:x\ge0\right)\)
Để A+B nhận giá trị nguyên thì: \(\sqrt{x}+3\inƯ\left(1\right)=\left\{1;-1\right\}\)
Vì \(x\ge0\)
\(\Rightarrow x\in\varnothing\)
Để A+B là số nguyên thì \(\sqrt{x}+4⋮\sqrt{x}+3\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{1;-1\right\}\)(vô lý)
Cho A= \(\dfrac{\sqrt{x}+4}{{}\sqrt{x}-1}\) và B= \(\dfrac{x+2\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)} -\dfrac{3\sqrt{x}-3}{x-1}\) (đk: x>0,x≠1)
a) Rút gọn P=A.B
b) Tìm x để P(\(\sqrt{x}+1\)) ≤ 6-x
c) Tìm x để P nhận giá trị nguyên
\(\left(\dfrac{\sqrt{x}}{x-4}-\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}-2}{x-4}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm giá trị của x để A< O
c) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
B=\(\left(\dfrac{\sqrt{x}-2}{x-2\sqrt{x}+1}-\dfrac{\sqrt{x}+2}{x-1}\right)\left(x-\sqrt{x}\right)\) Với \(x>0;x\ne1\)
a) Rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để B nhận giá trị nguyên
\(B=\left[\dfrac{\sqrt{x-2}}{\left(\sqrt{x}-1\right)^2}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\left[\dfrac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\left[\dfrac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\dfrac{-2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\dfrac{2x}{x-1}\)
b/
\(B=-\dfrac{2\left(x-1\right)+2}{x-1}=-2+\dfrac{2}{x-1}\)
Để B nguyên
\(x-1=\left\{-1;-2;1;2\right\}\Rightarrow x=\left[0;-1;2;3\right]\)
Tìm x nguyên để \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\) nhận giá trị nguyên
\(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\left(x\ge0;x\ne9\right)=\dfrac{\sqrt{x}+3-2}{\sqrt{x}+3}=1-\dfrac{2}{\sqrt{x}+3}\)
Để \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\Leftrightarrow\dfrac{2}{\sqrt{x}+3}\in Z\)
\(\Leftrightarrow2⋮\sqrt{x}+3\\ \Leftrightarrow\sqrt{x}+3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{-5;-4;-2;-1\right\}\\ \Leftrightarrow x\in\left\{1;4;16;25\right\}\)
Vậy \(x\in\left\{1;4;16;25\right\}\) thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\)
Tick plz
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}+3\ne0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne-3\left(loại\right)\end{matrix}\right.\)\(\Rightarrow x\ge0\)
\(x\in Z\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\Rightarrow\left(\sqrt{x}+1\right)⋮\left(\sqrt{x}+3\right)\)
\(\Rightarrow\left(\sqrt{x}+3-2\right)⋮\left(\sqrt{x}+3\right)\)
Vì \(\Rightarrow\left(\sqrt{x}+3\right)⋮\left(\sqrt{x}+3\right)\)
\(\Rightarrow2⋮\left(\sqrt{x}+3\right)\Rightarrow\sqrt{x}+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng:
\(\sqrt{x}+3\) | -1 | -2 | 1 | 2 |
\(x\) | \(\sqrt{x}=-4\left(loại\right)\) | \(\sqrt{x}=-5\left(loại\right)\) | \(\sqrt{x}=-2\left(loại\right)\) | \(\sqrt{x}=-1\left(loại\right)\) |
Vậy không có x nguyên thỏa mãn đề bài
\(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3}{\sqrt{x}+3}-\dfrac{2}{\sqrt{x}+3}=1-\dfrac{2}{\sqrt{x}+3}\)
Để \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\) thì \(2⋮\sqrt{x}+3\Rightarrow\sqrt{x}+3\in\) Ư(2)\(=\left\{1;-1;2;-2\right\}\)
Vì \(\sqrt{x}\ge0\Rightarrow x\in\varnothing\)
A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) và B=\(\dfrac{-3\sqrt{x}-3}{x-9}\) Tìm giá trị x nguyên để P=B:A đạt giá trị nguyên
\(P=B:A\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
P nguyên
=>căn x+3 thuộc Ư(-3)
=>căn x+3 thuộc {1;-1;3;-3}
=>căn x+3=3
=>x=0
Tìm x nguyên để P=\(\dfrac{\sqrt{x}+5}{3\sqrt{x}+1}\) nhận giá trị nguyên
\(P\in Z\Rightarrow3P\in Z\Rightarrow\dfrac{3\sqrt{x}+15}{3\sqrt{x}+1}\in Z\)
\(\Rightarrow1+\dfrac{14}{3\sqrt{x}+1}\in Z\)
\(\Rightarrow3\sqrt{x}+1=Ư\left(14\right)=\left\{1;2;7;14\right\}\) (do \(3\sqrt{x}+1\ge1\))
\(3\sqrt{x}+1=1\Rightarrow x=0\)
\(3\sqrt{x}+1=2\Rightarrow x=\dfrac{1}{9}\notin Z\) (loại)
\(3\sqrt{x}+1=7\Rightarrow x=4\)
\(3\sqrt{x}+1=14\Rightarrow x=\dfrac{169}{9}\notin Z\) (loại)
Thế \(x=\left\{0;4\right\}\) vào P đều thỏa mãn
Vậy ....