\(\dfrac{x\sqrt{x}}{\sqrt{x}+2}-2\sqrt{x}\)
\(B=\dfrac{sin+cos}{sin^3+cos^3}\)
tan =3
a/\(\sin3x+\cos2x=1+2\sin x\cos2x\)
b/\(\sin^3x+\cos^3x=2\left(\sin^5x+\cos^5x\right)\)
c/\(\dfrac{\tan x}{\sin x}-\dfrac{\sin x}{\cos x}=\dfrac{\sqrt{2}}{2}\)
d/\(\dfrac{\cos x\left(\cos x+2\sin x\right)+3\sin x\left(\sin x+\sqrt{2}\right)}{\sin2x-1}=1\)
e/\(\sin^2x+\sin^23x-2\cos^22x=0\)
f/\(\dfrac{\tan x-\sin x}{\sin^3x}=\dfrac{1}{\cos x}\)
g/\(\sin2x\left(\cos x+\tan2x\right)=4\cos^2x\)
h/\(\sin^2x+\sin^23x=\cos^2x+\cos^23x\)
k/\(4\sin2x=\dfrac{\cos^2x-\sin^2x}{\cos^6x+\sin^6x}\)
mọi người giải giúp em với em đang cần gấp ạ
Tìm số đo góc nhọn x:
a) \(4\sin x-1=1\)
b) \(2\sqrt{3}-3\tan x=\sqrt{3}\)
c) \(7\sin-3\cos\left(90^o-x\right)=2,5\)
d) \(\left(2\sin-\sqrt{2}\right)\left(4\cos-5\right)=0\)
e) \(\dfrac{1}{\cos^2x}-\tan x=1\)
f) \(\cos^2x-3\sin^2x=0,19\)
a) \(4sinx-1=1\Leftrightarrow4sinx=2\Leftrightarrow sinx=\dfrac{2}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow x=30^o\)
b) \(2\sqrt{3}-3tanx=\sqrt{3}\Leftrightarrow3tanx=2\sqrt{3}-\sqrt{3}=\sqrt{3}\Leftrightarrow tanx=\dfrac{\sqrt{3}}{3}\)
\(\Leftrightarrow x=30^o\)
c) \(7sinx-3cos\left(90^o-x\right)=2,5\Leftrightarrow7sinx-3sinx=2,5\Leftrightarrow4sinx=2,5\Leftrightarrow sinx=\dfrac{5}{8}\Leftrightarrow x=30^o41'\)
d)\(\left(2sin-\sqrt{2}\right)\left(4cos-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2sin-\sqrt{2}=0\\4cos-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2sin=\sqrt{2}\\4cos=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin=\dfrac{\sqrt{2}}{2}\\cos=\dfrac{5}{4}\left(loai\right)\end{matrix}\right.\)\(\Rightarrow x=45^o\)
Xin lỗi nãy đang làm thì bấm gửi, quên còn câu e, f nữa:"(
e) \(\dfrac{1}{cos^2x}-tanx=1\Leftrightarrow1+tan^2x-tanx-1=0\Leftrightarrow tan^2x-tanx=0\Leftrightarrow tanx\left(tanx-1\right)=0\Rightarrow tanx-1=0\Leftrightarrow tanx=1\Leftrightarrow x=45^o\)
f) \(cos^2x-3sin^2x=0,19\Leftrightarrow1-sin^2x-3sin^2x=0,19\Leftrightarrow1-4sin^2x=0,19\Leftrightarrow4sin^2x=0,81\Leftrightarrow sin^2x=\dfrac{81}{400}\Leftrightarrow sinx=\dfrac{9}{20}\Leftrightarrow x=26^o44'\)
Giải các pt
a) \(\sqrt{2}\sin\left(2x+\dfrac{\pi}{4}\right)=3\sin x+\cos x+2\)
b) \(\dfrac{\left(2-\sqrt{3}\right)\cos x-2\sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2\cos x-1}=1\)
c) \(2\sqrt{2}\cos\left(\dfrac{5\pi}{12}-x\right)\sin x=1\)
a.
\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)
\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)
\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)
\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)
\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)
\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)
\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)
\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)
\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)
Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)
c.
\(2\sqrt{2}cos\left(\dfrac{5\pi}{12}-x\right)sinx=1\)
\(\Leftrightarrow\sqrt{2}\left(sin\left(\dfrac{5\pi}{12}\right)+sin\left(2x-\dfrac{5\pi}{12}\right)\right)=1\)
\(\Leftrightarrow sin\left(2x-\dfrac{5\pi}{12}\right)=\dfrac{-\sqrt{6}+\sqrt{2}}{2}\)
\(\Leftrightarrow sin\left(2x-\dfrac{5\pi}{12}\right)=sin\left(-\dfrac{\pi}{12}\right)\)
\(\Leftrightarrow...\)
Rút gọn các biểu thức sau
1, \(\dfrac{1+\cot x}{1-\cot x}-\dfrac{2+2\cot^2x}{\left(\tan x-1\right)\left(\tan^2x+1\right)}\)
2, \(\sqrt{\sin^4x+6\cos^2x+3\cos^4x}+\sqrt{\cos^4x+6\sin^2x+3\sin^4x}\)
Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý
Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)
Câu 1 đề vẫn có vấn đề:
\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2\left(1+cot^2x\right)cot^2x}{\left(tanx-1\right)\left(tan^2x+1\right)cot^2x}=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^2x}{tanx-1}\)
\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^3x}{1-cotx}=\dfrac{1+cotx-2cot^3x}{1-cotx}\)
\(=\dfrac{\left(1-cotx\right)\left(1+2cotx+2cot^2x\right)}{1-cotx}=1+2cotx+2cot^2x\)
Có thể coi như ko thể rút gọn tiếp
2.
\(\sqrt{\left(1-cos^2x\right)^2+6cos^2x+3cos^4x}+\sqrt{\left(1-sin^2x\right)^2+6sin^2x+3sin^4x}\)
\(=\sqrt{4cos^4x+4cos^2x+1}+\sqrt{4sin^4x+4sin^2x+1}\)
\(=\sqrt{\left(2cos^2x+1\right)^2}+\sqrt{\left(2sin^2x+1\right)^2}\)
\(=2\left(cos^2x+sin^2x\right)+2=4\)
Cho 0o < x < 90o, CM các đẳng thức
1/ \(\dfrac{1}{\tan x+1}+\dfrac{1}{\cot x+1}=1\)
2/ \(\dfrac{\cos x}{\sin x-\cos x}+\dfrac{\sin x}{\sin x+\cos x}=\dfrac{1+\cot^2x}{1-\cot^2x}\)
3/ \(\left(\sqrt{\dfrac{1+\sin x}{1-\sin x}}-\sqrt{\dfrac{1-\sin x}{1+\sin x}}\right)^2=4\tan^2x\)
4/ \(\left(\sqrt{\dfrac{1+\cos x}{1-\cos x}}-\sqrt{\dfrac{1-\cos x}{1+\cos x}}\right)^2=4\cot^2x\)
1: \(=\dfrac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}\)
\(=\dfrac{\dfrac{1}{cotx}+cotx+2}{2+tanx+cotx}\)
\(=1\)
2: \(VT=\dfrac{cos^2x+cosxsinx+sin^2x-sinx\cdot cosx}{sin^2x-cos^2x}\)
\(=\dfrac{1}{sin^2x-cos^2x}\)
\(VP=\dfrac{1+cot^2x}{1-cot^2x}=\left(1+\dfrac{cos^2x}{sin^2x}\right):\left(1-\dfrac{cos^2x}{sin^2x}\right)\)
\(=\dfrac{1}{sin^2x}:\dfrac{sin^2x-cos^2x}{sin^2x}=\dfrac{1}{sin^2x-cos^2x}\)
=>VT=VP
1. CM:
\(\dfrac{1}{2}\le\dfrac{\sin x+2\cos x+3}{2\sin x\cos x+3}\le2\)
2. Giải PT:
a) \(\dfrac{1}{\cos x}=4\sin x+6\cos x\)
b) \(\sin^3\left(x-\dfrac{\pi}{4}\right)=\sqrt{2}\sin x\)
c) \(\dfrac{1}{\cos x}+\dfrac{1}{\sin2x}=\dfrac{2}{\sin4x}\)
1.
Kiểm tra lại đề bài, câu này phải là \(\dfrac{sinx+2cosx+3}{2sinx+cosx+3}\) mới đúng
2.a
ĐKXĐ: \(cosx\ne0\)
\(\Leftrightarrow\dfrac{1}{cos^2x}=4tanx+6\)
\(\Leftrightarrow1+tan^2x=4tanx+6\)
\(\Leftrightarrow tan^2x-4tanx-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(5\right)+k\pi\end{matrix}\right.\)
2b.
Đặt \(x-\dfrac{\pi}{4}=t\Rightarrow x=t+\dfrac{\pi}{4}\)
\(sin^3t=\sqrt{2}sin\left(t+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow sin^3t=sint+cost\)
\(\Leftrightarrow sint\left(1-cos^2t\right)=sint+cost\)
\(\Leftrightarrow sint.cos^2t+cost=0\)
\(\Leftrightarrow cost\left(sint.cost+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cost=0\\sin2t=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=0\\sin\left(2x-\dfrac{\pi}{2}\right)=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
2c.
ĐKXĐ: \(sin4x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{4}\)
\(\dfrac{4sinx.cos2x}{sin4x}+\dfrac{2cos2x}{sin4x}=\dfrac{2}{sin4x}\)
\(\Leftrightarrow2sinx.cos2x+cos2x=1\)
\(\Leftrightarrow2sinx.cos2x+1-2sin^2x=1\)
\(\Leftrightarrow sinx\left(cos2x-sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(loại\right)\\cos2x-sinx=0\end{matrix}\right.\)
\(\Leftrightarrow1-2sin^2x-sinx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\left(loại\right)\\sinx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+k2\pi\)
Tìm GTLN, GTNN:
a, \(y=\sin x+\cos x\).
b, \(y=\dfrac{1}{2}\sin x+\dfrac{\sqrt{3}}{2}\cos x+3\).
c, \(y=\sqrt{3}\sin2x-\cos2x\).
a: \(y=\sqrt{2}sin\left(x+\dfrac{pi}{4}\right)\)
\(-1< =sin\left(x+\dfrac{pi}{4}\right)< =1\)
=>\(-\sqrt{2}< =y< =\sqrt{2}\)
\(y_{min}=-\sqrt{2}\) khi sin(x+pi/4)=-1
=>x+pi/4=-pi/2+k2pi
=>x=-3/4pi+k2pi
\(y_{max}=\sqrt{2}\) khi sin(x+pi/4)=1
=>x+pi/4=pi/2+k2pi
=>x=pi/4+k2pi
b: \(y=sinx\cdot cos\left(\dfrac{pi}{3}\right)+cosx\cdot sin\left(\dfrac{pi}{3}\right)+3\)
\(=sin\left(x+\dfrac{pi}{3}\right)+3\)
-1<=sin(x+pi/3)<=1
=>-1+3<=sin(x+pi/3)+3<=4
=>2<=y<=4
y min=2 khi sin(x+pi/3)=-1
=>x+pi/3=-pi/2+k2pi
=>x=-5/6pi+k2pi
y max=4 khi sin(x+pi/3)=1
=>x+pi/3=pi/2+k2pi
=>x=pi/6+k2pi
c: \(y=2\cdot\left(sin2x\cdot\dfrac{\sqrt{3}}{2}-cos2x\cdot\dfrac{1}{2}\right)\)
\(=2sin\left(2x-\dfrac{pi}{6}\right)\)
-1<=sin(2x-pi/6)<=1
=>-2<=y<=2
y min=-2 khi sin(2x-pi/6)=-1
=>2x-pi/6=-pi/2+k2pi
=>2x=-1/3pi+k2pi
=>x=-1/6pi+kpi
y max=2 khi sin(2x-pi/6)=1
=>2x-pi/6=pi/2+k2pi
=>2x=2/3pi+k2pi
=>x=1/3pi+kpi
Giải PT
a1) \(3.\cos4x-2^{ }\cos^23x=1\)
a2) \(2\cos2x-8\cos x+7=\dfrac{1}{\cos x}\)
a3) \(\dfrac{\left(1+\sin x+\cos2x\right)\sin\left(x+\dfrac{\pi}{4}\right)}{1+\tan x}=\dfrac{1}{\sqrt{2}}\cos x\)
a4) \(9\sin x+6\cos x-3\sin2x+\cos2x=8\)
a) Pt \(\Leftrightarrow3.cos4x-\left(cos6x+1\right)=1\)
\(\Leftrightarrow3cos4x-cos6x-2=0\)
Đặt \(t=2x\)
Pttt:\(3cos2t-cos3t-2=0\)
\(\Leftrightarrow3\left(2cos^2t-1\right)-\left(4cos^3t-3cost\right)-2=0\)
\(\Leftrightarrow-4cos^3t+6cos^2t+3cost-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cost=1\\cost=\dfrac{1+\sqrt{21}}{4}\left(vn\right)\\cost=\dfrac{1-\sqrt{21}}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}t=k2\pi\\t=\pm arc.cos\left(\dfrac{1-\sqrt{21}}{4}\right)+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\dfrac{1}{2}.arccos\left(\dfrac{1-\sqrt{21}}{4}\right)+k\pi\end{matrix}\right.\) (\(k\in Z\))
Vậy...
a2) \(2cos2x-8cosx+7=\dfrac{1}{cosx}\) (ĐK: \(x\ne\dfrac{\pi}{2}+k\pi\))
\(\Leftrightarrow2.\left(2cos^2x-1\right)-8cosx+7=\dfrac{1}{cosx}\)
\(\Leftrightarrow2.\left(2cos^2x-1\right)cosx-8cos^2x+7cosx=1\)
\(\Leftrightarrow4cos^3x-8cos^2x+5cosx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) (tm) (\(k\in Z\))
Vậy...
a3) Đk: \(x\ne-\dfrac{\pi}{4}+k\pi;x\ne\dfrac{\pi}{2}+k\pi\)
Pt \(\Leftrightarrow\dfrac{\left(1+sinx+1-2sin^2x\right).\dfrac{1}{\sqrt{2}}\left(sinx+cosx\right)}{1+\dfrac{sinx}{cosx}}=\dfrac{1}{\sqrt{2}}cosx\)
\(\Leftrightarrow\dfrac{\left(-2sin^2x+sinx+2\right).\left(sinx+cosx\right)cosx}{cosx+sinx}=cosx\)
\(\Leftrightarrow\left(2+sinx-2sin^2x\right).cosx=cosx\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\left(ktm\right)\\2+sinx-2sin^2x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}cosx=0\left(ktm\right)\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\) (\(k\in Z\))
Vậy...
a4) Pt \(\Leftrightarrow9sinx+6cosx-6sinx.cosx+1-2sin^2x=8\)
\(\Leftrightarrow6cosx\left(1-sinx\right)-\left(2sin^2x-9sinx+7\right)=0\)
\(\Leftrightarrow6cosx\left(1-sinx\right)-\left(2sinx-7\right)\left(sinx-1\right)=0\)
\(\Leftrightarrow\left(1-sinx\right)\left(6cosx+2sinx+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\6cosx+2sinx=7\left(vn\right)\end{matrix}\right.\) (\(6cosx+2sinx=7\) vô nghiệm do \(6^2+2^2< 7^2\))
\(\Rightarrow sinx=1\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi;k\in Z\)
Vậy...
giải phương trình
a) \(sin\left(x-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)
b) \(cos\left(x+\dfrac{\pi}{4}\right)=cos\dfrac{3\pi}{4}\)
c) \(tan2x=tan\left(x+\dfrac{\pi}{3}\right)\)
d) \(cot2x=-\dfrac{\sqrt{3}}{3}\)
a: \(sin\left(x-\dfrac{\Omega}{4}\right)=-\dfrac{\sqrt{2}}{2}\)
=>\(sin\left(x-\dfrac{\Omega}{4}\right)=sin\left(-\dfrac{\Omega}{4}\right)\)
=>\(\left[{}\begin{matrix}x-\dfrac{\Omega}{4}=-\dfrac{\Omega}{4}+k2\Omega\\x-\dfrac{\Omega}{4}=\Omega+\dfrac{\Omega}{4}+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k2\Omega\\x=\dfrac{3}{2}\Omega+k2\Omega\end{matrix}\right.\)
b: \(cos\left(x+\dfrac{\Omega}{4}\right)=cos\left(\dfrac{3}{4}\Omega\right)\)
=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{4}=\dfrac{3}{4}\Omega+k2\Omega\\x+\dfrac{\Omega}{4}=-\dfrac{3}{4}\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\Omega+k2\Omega\\x=-\Omega+k2\Omega\end{matrix}\right.\)
c: ĐKXĐ: \(\left\{{}\begin{matrix}2x< >\dfrac{\Omega}{2}+k\Omega\\x+\dfrac{\Omega}{3}< >\dfrac{\Omega}{2}+k\Omega\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< >\dfrac{\Omega}{4}+\dfrac{k\Omega}{2}\\x< >\dfrac{1}{6}\Omega+k\Omega\end{matrix}\right.\)
\(tan2x=tan\left(x+\dfrac{\Omega}{3}\right)\)
=>\(2x=x+\dfrac{\Omega}{3}+k\Omega\)
=>\(x=\dfrac{\Omega}{3}+k\Omega\)
d: ĐKXĐ: \(2x< >k\Omega\)
=>\(x< >\dfrac{k\Omega}{2}\)
\(cot2x=-\dfrac{\sqrt{3}}{3}\)
=>\(cot2x=cot\left(-\dfrac{\Omega}{3}\right)\)
=>\(2x=-\dfrac{\Omega}{3}+k\Omega\)
=>\(x=-\dfrac{\Omega}{6}+\dfrac{k\Omega}{2}\)