Giải phương trình:
\(\left|sinx\right|=cos2x\)
Giải phương trình: \(3Cos4x+\left(Cos2x-Sinx\right)^2=7\)
\(3cos4x+\left(cos2x-sinx\right)^2\)
\(=3cos4x+\left(\left|cos2x-sinx\right|\right)^2\)
\(\le3cos4x+\left[\left|cos2x\right|+\left|sin\left(-x\right)\right|\right]^2\)
\(\le3cos4x+2\left(cos^22x+sin^2x\right)\)
\(=8cos^22x+2sin^2x-3\)
\(=8cos^22x-cos2x-2\le7\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}cos2x=-1\\cos2x.sin\left(-x\right)\ge0\\cos2x=sin\left(-x\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)
Giải phương trình:
\(\sqrt{3}\left(Sinx-Cos2x\right)+Cosx+Sin2x=0\)
giải phương trình sau:
\(\dfrac{2sin^2x+cos4x-cos2x}{\left(sinx-cosx\right)sin2x}\)=0
ĐK: \(x\ne\dfrac{\pi}{4}+k\pi;x\ne\dfrac{k\pi}{2}\)
\(\dfrac{2sin^2x+cos4x-cos2x}{\left(sinx-cosx\right)sin2x}=0\)
\(\Leftrightarrow2sin^2x+cos4x-cos2x=0\)
\(\Leftrightarrow2sin^2x-1+cos4x-cos2x+1=0\)
\(\Leftrightarrow2cos^22x-2cos2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k\pi\\2x=k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=k\pi\end{matrix}\right.\)
Đối chiếu điều kiện ta được \(x=-\dfrac{\pi}{4}+k\pi\)
Giải phương trình:
a, \(Tanx+Cosx-Cos^2x=Sinx\left(1+Tanx.Tan\dfrac{x}{2}\right)\)
b, \(1+Sinx+Cosx+Sin2x+Cos2x=0\)
1 + sinx + cosx + sin2x + cos2x = 0
<=> sin^2x+ cos^2 x + ( sinx+cosx) + 2.sinx.cosx + ( cos^2 x - sin^2 x)=0
<=> 2 cos^2 x + 2sinx.cosx + sinx + cosx =0
<=> 2cosx ( cos x + sinx) + sinx + cosx = 0
<=> ( cosx + sinx ) (2 cos x + 1 ) = 0
<=> cosx + sinx = 0 hoặc 2cosx + 1 =0
Tìm m để phương trình \(cos2x+\left(2m-3\right)sinx-m+1=0\) có đúng 7 nghiệm trên \(\left(-\dfrac{\pi}{6};3\pi\right)\)
Giải pt
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(sin2x-cos2x+3sinx-cosx-1=0\)
1.
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)
\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)
\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)
Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)
\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)
2.
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)
\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Cho phương trình (1-Sinx)(Cos2x + 3mSinx+Sinx-1)=\(mCos^2x\) (m là tham số). Tìm các giá trị thực của m để phương trình có 6 nghiệm khác nhau thuộc khoảng \(\left(-\dfrac{\Pi}{2};2\Pi\right)\)
\(\Leftrightarrow\left(1-sinx\right)\left(cos2x+3msinx+sinx-1\right)=m\left(1-sinx\right)\left(1+cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\Rightarrow x=\dfrac{\pi}{2}\\cos2x+3m.sinx+sinx-1=m\left(1+sinx\right)\left(1\right)\end{matrix}\right.\)
Bài toán thỏa mãn khi (1) có 5 nghiệm khác nhau trên khoảng đã cho thỏa mãn \(sinx\ne1\)
Xét (1):
\(\Leftrightarrow1-2sin^2x+3msinx+sinx-1=m+m.sinx\)
\(\Leftrightarrow2sin^2x-sinx-2m.sinx+m=0\)
\(\Leftrightarrow sinx\left(2sinx-1\right)-m\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx-m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\Rightarrow x=\dfrac{\pi}{6};\dfrac{5\pi}{6}\\sinx=m\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(2\right)\) có 3 nghiệm khác nhau trên \(\left(-\dfrac{\pi}{2};2\pi\right)\)
\(\Leftrightarrow-1< m< 0\)
Giải các phương trình sau:
a, sinx+cosx+1+sin2x+cos2x=0
b, sinx(1+cos2x)+sin2x=1+cos2x
c, \(\frac{1}{sinx}+\frac{1}{sin\left(x-\frac{3\pi}{2}\right)}=4sin\left(\frac{7\pi}{4}-x\right)\)
d, sin4x+cos4x=\(\frac{7}{8}cot\left(x+\frac{\pi}{3}\right)cot\left(\frac{\pi}{6}-x\right)\)
@Nguyễn Việt Lâm giúp em với ạ
a.
\(sinx+cosx+\left(sinx+cosx\right)^2+cos^2x-sin^2x=0\)
\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1+2cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\\1+2cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
b.
\(sinx\left(1+2cos^2x-1\right)+2sinx.cosx=1+2cos^2x-1\)
\(\Leftrightarrow cos^2x.sinx+sinx.cosx-cos^2x=0\)
\(\Leftrightarrow cosx\left(sinx.cosx+sinx-cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\\sinx.cosx+sinx-cosx=0\left(1\right)\end{matrix}\right.\)
Xét (1), đặt \(sinx-cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{1-t^2}{2}\end{matrix}\right.\)
\(\Rightarrow\frac{1-t^2}{2}+t=0\)
\(\Leftrightarrow-t^2+2t+1=0\Rightarrow\left[{}\begin{matrix}t=1-\sqrt{2}\\t=1+\sqrt{2}>\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=1-\sqrt{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{1-\sqrt{2}}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+arcsin\left(\frac{1-\sqrt{2}}{\sqrt{2}}\right)+k2\pi\\x=\frac{5\pi}{4}-arcsin\left(\frac{1-\sqrt{2}}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
1, cho phương trình \(sin2x-\left(2m+\sqrt{2}\right)\left(sinx+cosx\right)+2m\sqrt{2}+1=0\) tìm các giá trị m để phương trình có đúng 2 nghiệm \(x\in\left(0;\dfrac{5\Pi}{4}\right)\)
2,tìm tất cả các giá trị thực của tham số m để phương trình \(cos2x+\left(2m+1\right)sinx-m-1=0\) có đúng 2 nghiệm thuộc khoảng \(\left(\dfrac{\Pi}{2};\dfrac{3\Pi}{2}\right)\)
3, cho phương trình \(cos^2x-2mcosx+6m-9=0\) tìm các giá trị m để phương trình có nghiệm thuộc khoảng \(\left(-\dfrac{\Pi}{2};\dfrac{\Pi}{2}\right)\)