CMR:
\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\le2\) \(\left(đk:x\ge0,x\ne4\right)\)
Bài 1: Cho \(A=\left(\dfrac{x-4}{\sqrt{x}-2}+\dfrac{x\sqrt{x}-8}{4-x}\right):\left[\dfrac{\left(\sqrt{x}-2\right)^2+2\sqrt{x}}{\sqrt{x}+2}\right]\)với \(x\ge0\); \(x\ne4\)
a, Rút gọn A
b, CMR: \(A< 1\) với \(x\ge0\); \(x\ne4\)
c, Tìm x để A nguyên
a: \(A=\left(\dfrac{\left(x-4\right)\left(\sqrt{x}+2\right)-x\sqrt{x}+8}{x-4}\right):\dfrac{x-2\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8-x\sqrt{x}+8}{x-4}\cdot\dfrac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)
\(=\dfrac{2x-4\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{1}{x-2\sqrt{x}+4}=\dfrac{2\sqrt{x}}{x-2\sqrt{x}+4}\)
b: \(A-1=\dfrac{2\sqrt{x}-x+2\sqrt{x}-4}{x-2\sqrt{x}+4}\)
\(=\dfrac{-x+4\sqrt{x}-4}{x-2\sqrt{x}+4}=\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)^2+3}< 0\)
=>A<1
c: \(2\sqrt{x}>=0;x-2\sqrt{x}+4=\left(\sqrt{x}-1\right)^2+3>0\)
=>A>=0 với mọi x thỏa mãn ĐKXĐ
mà A<1
nên 0<=A<1
=>Để A nguyên thì A=0
=>x=0
p= \(\left(\dfrac{x+2\sqrt{x}}{x-4}-\dfrac{2\sqrt{x}+1}{2x-3\sqrt{x}-2}-\dfrac{x}{\sqrt{x}-2}\right)\dfrac{x-1}{x\sqrt{x}+1}vớix\ge0;x\ne4\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{2x-4\sqrt{x}+\sqrt{x}-2}-\dfrac{x}{\sqrt{x}-2}\right)\cdot\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-1-x}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}=\dfrac{-\sqrt{x}+1}{\sqrt{x}-2}\)
Rút gọn
\(\dfrac{6}{\sqrt{5}+1}+\sqrt{\dfrac{2}{3-\sqrt{5}}}-\dfrac{10}{\sqrt{5}}\)
B1. Với \(x\ge0,x\ne4.Chobiểuthức\)
\(A=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{2-\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(B=\dfrac{1}{x\sqrt{x}+27}\)
a, tính giá trị biểu thức khi B= 1/4
b, Rút gọn A
c, Tìm giá trị của x để A>1/2
d, Với C= B : A. Tìm GTLN C
a) Ta có: \(\dfrac{6}{\sqrt{5}+1}+\sqrt{\dfrac{2}{3-\sqrt{5}}}-\dfrac{10}{\sqrt{5}}\)
\(=\dfrac{6\left(\sqrt{5}-1\right)}{4}+\sqrt{\dfrac{2\left(3+\sqrt{5}\right)}{4}}-2\sqrt{5}\)
\(=\dfrac{3}{2}\left(\sqrt{5}-1\right)+\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-2\sqrt{5}\)
\(=\dfrac{3}{2}\sqrt{5}-\dfrac{3}{2}-2\sqrt{5}+\dfrac{\sqrt{5}+1}{2}\)
\(=-\dfrac{1}{2}\sqrt{5}-\dfrac{3}{2}+\dfrac{1}{2}\sqrt{5}+\dfrac{1}{2}\)
=-1
Bài 1:
a) Thay \(x=\dfrac{1}{4}\)vào B, ta được:
\(B=1:\left(\dfrac{1}{4}\cdot\dfrac{1}{2}+27\right)=1:\left(27+\dfrac{1}{8}\right)=\dfrac{8}{217}\)
b) Ta có: \(A=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(=\dfrac{x-9+\sqrt{x}+3-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+\sqrt{x}-6-x+2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\)
c) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)
\(\Leftrightarrow3-\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}< 3\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne4\end{matrix}\right.\)
Rút gọn biểu thức B:
B = \(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+2}{x-4}\) với \(x\ge0;x\ne4\)
rút gọn bt :
\(\left(\dfrac{8-x\sqrt{x}}{2-\sqrt{x}}+2\sqrt{x}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\left(x\ge0;x\ne4\right)\)
\(\left(\dfrac{8-x\sqrt{x}}{2-\sqrt{x}}+2\sqrt{x}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2=\left(x+2\sqrt{x}+4+2\sqrt{x}\right).\dfrac{\left(2-\sqrt{x}\right)^2}{\left(\sqrt{x}+2\right)^2}=\left(\sqrt{x}+2\right)^2.\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)^2}=\left(\sqrt{x}-2\right)^2\)
Rút gọn: \(\dfrac{\sqrt{x}\left(16-\sqrt{x}\right)}{x-4}+\dfrac{3+2\sqrt{x}}{2-\sqrt{x}}-\dfrac{2-3\sqrt{x}}{\sqrt{x}+2}\) với \(x\ge0;x\ne4\)
Ta có: \(\dfrac{\sqrt{x}\left(16-\sqrt{x}\right)}{x-4}+\dfrac{3+2\sqrt{x}}{2-\sqrt{x}}-\dfrac{2-3\sqrt{x}}{\sqrt{x}+2}\)
\(=\dfrac{16\sqrt{x}-x-\left(3+2\sqrt{x}\right)\left(\sqrt{x}+2\right)+\left(3\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{16\sqrt{x}-x-3\sqrt{x}-6-2x-4\sqrt{x}+3x-6\sqrt{x}-2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{1}{\sqrt{x}+2}\)
Rút gọn các biểu thức sau:
\(C=\left(\dfrac{\sqrt{x}+1}{x-4}-\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right).\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}-2}\)
(với \(x\ge0,x\ne4,x\ne9\))
\(D=\left(\dfrac{\sqrt{x}+2}{x-9}-\dfrac{\sqrt{x}-2}{x+6\sqrt{x}+9}\right).\dfrac{x\sqrt{x}+3x-9\sqrt{x}-27}{\sqrt{x}-2}\)
(với \(x\ge0,x\ne4,x\ne9\))
\(C=\left(\dfrac{\sqrt{x}+1}{x-4}-\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right).\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}-2}\)
\(=\left[\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+2\right)^2}\right].\dfrac{x\left(\sqrt{x}+2\right)-4\left(\sqrt{x}+2\right)}{\sqrt{x}-2}\)
\(=\left[\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right].\dfrac{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)
\(=\left[\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right].\left(\sqrt{x}+2\right)^2\)
\(=\dfrac{6\sqrt{x}}{\sqrt{x}-2}\)
\(C=\left[\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+2\right)^2}\right].\dfrac{\sqrt{x}\left(x-4\right)+2\left(x-4\right)}{\sqrt{x}-2}\) (\(x\ge0,x\ne4,x\ne9\))
\(C=\left[\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)^2}\right].\dfrac{\left(\sqrt{x}+2\right)\left(x-4\right)}{\sqrt{x}-2}\)
\(C=\dfrac{2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}.\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x-2}\right)}{\sqrt{x}-2}\)
\(C=\dfrac{2}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)^2}.\left(\sqrt{x}+2\right)^2\)
\(C=\dfrac{2}{\sqrt{x}-2}\)
Cho biểu thức: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\) (với \(x\ge0;x\ne4\)). Tìm x để: \(\left|P-2\right|>P-2\)
\(P=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{x-4}\)
\(=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
Để |P-2|>P-2 thì P-2>0
\(\Leftrightarrow3\sqrt{x}-2\sqrt{x}-4>0\)
hay x>16
\(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
\(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
\(\left|P-2\right|>P-2\)
\(\Leftrightarrow2-P>P-2\) ;\(P< 2\) ( vì \(P-2>P-2\left(vô.lý\right)\) )
\(\Leftrightarrow4>2P\)
\(\Leftrightarrow P< 2\)
\(\rightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}< 2\)
\(\Leftrightarrow3\sqrt{x}< 2\sqrt{x}+4\)
\(\Leftrightarrow\sqrt{x}< 4\)
\(\Leftrightarrow x< 16\) ( t/m )
Bài 3: Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\) với \(x\ge0\) và \(x\ne4\)
a) Rút gọn A
b) Tìm giá trị của x để A > 0
\(a,A=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\left(dk:x\ge0,x\ne4\right)\\ =\left(\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+10-x}{\sqrt{x}+2}\right)\\ =\dfrac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{x-4+10-x}\)
\(=\dfrac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\sqrt{x}-2}.\dfrac{1}{6}\\ =\dfrac{-6}{\left(\sqrt{x}-2\right).6}\\
=-\dfrac{1}{\sqrt{x}-2}\)
\(b,A>0\Leftrightarrow-\dfrac{1}{\sqrt{x}-2}>0\Leftrightarrow\sqrt{x}-2< 0\\
\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
Kết hợp với \(dk:x\ge0,x\ne4\), ta kết luận \(0\le x< 4\)
A = [√x/(x - 4) + 2/(2 - √x) + 1/(√x + 2)] : [(√x - 2 + (10 - x)/(√x + 2)]
= [√x/(√x - 2)(√x + 2) - 2(√x + 2)/(√x - 2)(√x + 2) + (√x - 2)/(√x - 2)(√x + 2)] : [(x - 4 + 10 - x)/(√x + 2)]
= [√x - 2(√x + 2) + (√x - 2)]/[(√x - 2)(√x + 2)] : 6/(√x + 2)
= (√x - 2√x - 4 + √x - 2)/(√x - 2)(√x + 2)] . (√x + 2)/6
= -1/(√x - 2)
Để A > 0 thì -1/(√x - 2) > 0
√x - 2 < 0
√x < 2
x < 4
Vậy 0 ≤ x < 4 thì A > 0