\(\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}x7+\dfrac{1}{2}\)
Bài 6: So sánh
a,\(\dfrac{1}{2}\)+\(\dfrac{1}{_{ }2^2}\)+\(\dfrac{1}{2_{ }^3}\)+...+\(\dfrac{1}{2^{2014}}\)và 1 b,\(\dfrac{10^{2018}+5}{10^{2018}-8}\)và \(\dfrac{10^{2019}+5}{10^{2019}-8}\)
c,\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{23.24.25}\)và\(\dfrac{1}{4}\)
1) Tính \(S=-1+\dfrac{1}{10}-\dfrac{1}{10^2}+...+\dfrac{\left(-1\right)^n}{10^{n-1}}\)
2) Tính \(S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}\)
1:
\(S=-\left(1-\dfrac{1}{10}+\dfrac{1}{10^2}-...-\dfrac{1}{10^{n-1}}\right)\)
\(=-\left[\left(-\dfrac{1}{10}\right)^0+\left(-\dfrac{1}{10}\right)^1+...+\left(-\dfrac{1}{10}\right)^{n-1}\right]\)
\(u_1=\left(-\dfrac{1}{10}\right)^0;q=-\dfrac{1}{10}\)
\(\left(-\dfrac{1}{10}\right)^0+\left(-\dfrac{1}{10}\right)^1+...+\left(-\dfrac{1}{10}\right)^{n-1}\)
\(=\dfrac{\left(-\dfrac{1}{10}\right)^0\left(1-\left(-\dfrac{1}{10}\right)^{n-1}\right)}{-\dfrac{1}{10}-1}\)
\(=\dfrac{1-\left(-\dfrac{1}{10}\right)^{n-1}}{-\dfrac{11}{10}}\)
=>\(S=\dfrac{1-\left(-\dfrac{1}{10}\right)^{n-1}}{\dfrac{11}{10}}\)
2:
\(S=\left(\dfrac{1}{3}\right)^0+\left(\dfrac{1}{3}\right)^1+...+\left(\dfrac{1}{3}\right)^{n-1}\)
\(u_1=1;q=\dfrac{1}{3}\)
\(S_{n-1}=\dfrac{1\cdot\left(1-\left(\dfrac{1}{3}\right)^{n-1}\right)}{1-\dfrac{1}{3}}\)
\(=\dfrac{3}{2}\left(1-\left(\dfrac{1}{3}\right)^{n-1}\right)\)
\(1,\) Ta có \(\left\{{}\begin{matrix}q=\dfrac{u_2}{u_1}=\dfrac{1}{10}:\left(-1\right)=-\dfrac{1}{10}\\u_1=-1\end{matrix}\right.\)
Vậy \(S=-1+\dfrac{1}{10}-\dfrac{1}{10^2}+...+\dfrac{\left(-1\right)^n}{10^{n-1}}=\dfrac{-1}{1-\left(-\dfrac{1}{10}\right)}=-\dfrac{10}{11}\)
\(2,\) Ta có \(\left\{{}\begin{matrix}q=\dfrac{u_2}{u_1}=\dfrac{1}{3}\\u_1=1\end{matrix}\right.\)
Vậy \(S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}=\dfrac{1}{1-\dfrac{1}{3}}=\dfrac{3}{2}\)
\(\dfrac{1}{10}+\dfrac{17}{20}+\dfrac{3}{10}+\dfrac{2}{20}+\dfrac{6}{10}+\dfrac{1}{20}\)
\(\dfrac{1}{10}+\dfrac{17}{20}+\dfrac{3}{10}+\dfrac{2}{20}+\dfrac{6}{10}+\dfrac{1}{20}\)
= \(\left(\dfrac{1}{10}+\dfrac{3}{10}+\dfrac{6}{10}\right)+\left(\dfrac{17}{20}+\dfrac{2}{20}+\dfrac{1}{20}\right)\)
= 1 + 1 = 2
= ( 1/10 + 3/10 + 6/10 ) + ( 17/20 + 2/20 + 1/20 ) = 1+1 = 2
So sánh:
a/ \(A=\dfrac{17^{18}+1}{17^{19}+1};B=\dfrac{17^{17}+1}{17^{18}+1}\)
b/ \(A=\dfrac{10^8-2}{10^8+2};B=\dfrac{10^8}{10^8+4}\)
c/ \(A=\dfrac{20^{10}+1}{20^{10}-1};B=\dfrac{20^{10}-1}{20^{10}-3}\)
GIÚP MÌNH VỚI
Giải:
a) A=1718+1/1719+1
17A=1719+17/1719+1
17A=1719+1+16/1719+1
17A=1+16/1719+1
Tương tự:
B=1717+1/1718+1
17B=1718+17/1718+1
17B=1718+1+16/1718+1
17B=1+16/1718+1
Vì 16/1719+1<16/1718+1 nên 17A<17B
⇒A<B
b) A=108-2/108+2
A=108+2-4/108+2
A=1+-4/108+2
Tương tự:
B=108/108+4
B=108+4-4/108+1
B=1+-4/108+1
Vì -4/108+2>-4/108+1 nên A>B
c)A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-3>2/2010-1 nên B>A
⇒A<B
Chúc bạn học tốt!
\(\dfrac{(13\dfrac{1}{4}-2\dfrac{5}{27}-10\dfrac{5}{6}).230.\dfrac{1}{25}+46\dfrac{3}{4}}{(1\dfrac{3}{10}+\dfrac{10}{3}):(12\dfrac{1}{3}-14\dfrac{2}{7})}\)
Đúng ghi Đ,sai ghi S:
a)\(\dfrac{1}{10}\) gấp 10 lần \(\dfrac{1}{100}\) __ b)\(\dfrac{1}{100}\) gấp 10 lần \(\dfrac{1}{10}\)__
c)\(\dfrac{1}{100}\) gấp lên 10 lần được \(\dfrac{1}{1000}\)__ d) \(\dfrac{1}{100}\) giảm đi 10 lần được \(\dfrac{1}{1000}\)__
__ là chỗ điền nha.
\(\dfrac{1}{8}-\dfrac{1}{2}+(\dfrac{-11}{12}+1)\)
\(\dfrac{3}{5}-\dfrac{-7}{10}+\dfrac{-13}{10}\)
`1/8 -1/2 + (-11/12 + 1)`
`=1/8 -1/2 + (-11/12 +12/12)`
`=1/8 -1/2 + 1/12`
`= 1/8- 4/8+1/12`
`= -3/8 + 1/12`
`=-7/24`
`---------`
`3/5 -(-7/10) + (-13/10)`
`= 3/5 + 7/10 + (-13/10)`
`= 6/10 + 7/10 + (-13/10)`
`= 13/10 +(-13/10)`
`= 0/10=0`
\(\dfrac{1}{8}-\dfrac{1}{2}+\left(\dfrac{-11}{12}+1\right)\\ =\dfrac{-3}{8}+\dfrac{1}{12}\\ =\dfrac{-7}{24}\\ \dfrac{3}{5}-\dfrac{-7}{10}+\left(-\dfrac{13}{10}\right)\\ =\dfrac{13}{10}-\dfrac{13}{10}\\ =0\)
\(\dfrac{1}{8}-\dfrac{1}{2}+\left(\dfrac{-11}{12}+1\right)=\dfrac{-3}{8}+\dfrac{1}{12}=\dfrac{-7}{24}\)
\(\dfrac{3}{5}-\dfrac{-7}{10}+\dfrac{-13}{10}=\dfrac{6}{10}-\dfrac{-7}{10}+\dfrac{-13}{10}=\dfrac{13}{10}+\dfrac{-13}{10}=\dfrac{0}{10}=0\)
\(\dfrac{\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}\right):\left(\dfrac{1}{6}+\dfrac{1}{10}-\dfrac{1}{15}\right)}{\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}\right):\left(\dfrac{1}{4}-\dfrac{1}{6}\right)}=\)
\(\dfrac{\left(\dfrac{5}{30}+\dfrac{3}{30}+\dfrac{2}{30}\right):\left(\dfrac{5}{30}+\dfrac{3}{30}-\dfrac{2}{30}\right)}{\left(\dfrac{30}{60}-\dfrac{20}{60}+\dfrac{15}{60}-\dfrac{12}{60}\right):\left(\dfrac{3}{12}-\dfrac{2}{12}\right)}=\dfrac{\dfrac{1}{3}:\dfrac{1}{5}}{\dfrac{13}{60}:\dfrac{1}{12}}=\dfrac{\dfrac{1}{3}\times5}{\dfrac{13}{60}\times12}=\dfrac{\dfrac{5}{3}}{\dfrac{13}{5}}=\dfrac{25}{39}\)
=\(\dfrac{\dfrac{1}{3}:\dfrac{1}{5}}{\dfrac{13}{60}:\dfrac{1}{12}}=\dfrac{\dfrac{5}{3}}{\dfrac{13}{5}}=\dfrac{25}{39}\)
b) B= \(\dfrac{1}{10}\).\(\dfrac{4}{11}\)+\(\dfrac{1}{10}\).\(\dfrac{8}{11}\)-\(\dfrac{1}{10}\).\(\dfrac{1}{11}\)
`1/10 . 4/11 + 1/10 . 8/11 - 1/10 . 1/11`
`= 1/10 . ( 4/11 + 8/11 - 1/11)`
`= 1/10 . 11/11`
`= 1/10 . 1`
`=1/10`
`@ yl`
\(B=\dfrac{1}{10}\times\dfrac{4}{11}+\dfrac{1}{10}\times\dfrac{8}{11}-\dfrac{1}{10}\times\dfrac{1}{11}\\ B=\dfrac{1}{10}\times\left(\dfrac{4}{11}+\dfrac{8}{11}-\dfrac{1}{11}\right)\\ B=\dfrac{1}{10}\times1\\ B=\dfrac{1}{10}\)