Bài 11: Tìm số tự nhiên nhỏ nhất khác 0 khi chia cho 7; 8; 9 được số dư lần lượt là 5; 6; 7.
Bài 10. Tìm số tự nhiên n nhỏ nhất sao cho khi chia n cho 5,7,11 thì được các số dư tương ứng
là 3,4,6.
Bài 11. Tìm số tự nhiên n lớn nhất có ba chữ số sao cho khi chia n cho 5,8,7 được các số dư
tương ứng là 2,3,5.
Bài 12. Tìm số tự nhiên n>0 nhỏ nhất sao cho n có thể viết thành tổng của ba số tự nhiên liên
tiếp và tổng của 7 số tự nhiên liên tiếp lớn hơn 0.
Bài 13. Tìm số tự nhiên n nhỏ nhất sao cho n có thể viết thành tổng của 4 số tự nhiên liên tiếp,
5 số tự nhiên liên tiếp và 6 số tự nhiên liên tiếp lớn hơn 0.
a. Tìm số tự nhiên nhỏ nhất khác 5 khi chia số đó cho 70 , 140 , 350 , 700 đều dư 5
b. Tìm số tự nhiên nhỏ nhất khi chia cho 3 dư 1 chia cho 5 dư 3 và chia cho 7 dư 5
c. Tìm số tự nhiên nhỏ nhất khi chia cho 5 dư 1 , chia cho 7 dư 5
d. Tìm số tự nhiên a nhỏ nhất, biết rằng a chia cho 5,7,9 thì số dư lần lượt là 3,4,5
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
tìm số tự nhiên nhỏ nhất khác không ,biết rằng khi chia số đó cho 8 thì dư 7 và chia cho 12 dư 11
Gọi số đó là a với a ∈ N*. Ta có:
a : 8 dư 7 => a+1 ⋮8 (1)
a : 12 dư 11 => a + 1⋮12 (2)
Từ (1) và (2) => a +1 ∈ BCNN(8;12)=24
=> a = 23.Vậy số đó bằng 23
Gọi x là số cần tìm (x ∈ ℕ*)
Do khi chia x cho 8 dư 7, chia x cho 12 dư 11 và x nhỏ nhất
⇒ x + 1 = BCNN(8; 12)
8 = 2³
12 = 2².3
⇒ x + 1 = BCNN(8; 12) = 2³.3 = 24
⇒ x = 24 - 1
⇒ x = 23
Vậy số cần tìm là 23
Tìm số tự nhiên n khác 0 nhỏ nhất sao cho khi chia n cho 6/7 và chia n cho 3/4 ta đều được kết quả là số tự nhiên
Giải:
Vì khi chia n cho \(\dfrac{6}{7}\) và chia n cho \(\dfrac{3}{4}\) ta đều đc kết quả là số tự nhiên nên ta có:
n ⋮ \(\dfrac{6}{7}\)
n ⋮ \(\dfrac{3}{4}\) ⇒n ∈ BCNN(6;3)
n nhỏ nhất
6=2.3
3=3
⇒BCNN(6;3)=2.3=6
Vậy số tự nhiên n khác 0 nhỏ nhất là 6.
Chúc bạn học tốt!
theo bài ra , ta có :
- a : \(\dfrac{6}{7}\) = \(\dfrac{7n}{6}\) \(\in\) N \(\Rightarrow\) 7n chia hết cho 6 .
Mà ƯCLN ( 7 ; 6 ) = 1 \(\Rightarrow\) n chia hết cho 6 . ( 1 )
- n : \(\dfrac{3}{4}\) = \(\dfrac{4n}{3}\) \(\in\) N \(\Rightarrow\) 4n chia hết cho 3 . ( 2 )
Mà ƯCLN ( 4 ; 3 ) = 1 \(\Rightarrow\) n chia hết cho 3 . ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\) n \(\in\) BC ( 6 ; 3 ) .
Mà n nhỏ nhất \(\Rightarrow\) n = BCNN ( 6 ; 3 ) = 6 .
Vậy số cần tìm là 6 .
tìm sô tự nhiên nhỏ nhất khác 0 biết rằng số đó chia hết cho 6 , 7 , 8 , 9
tìm số tự nhiên nhỏ nhất khác 3 biết rằng khi chia số đó cho 8 , 10 , 12 ta được số dư là 3
Giải giúp mình hai bài toán với , ai làm đúng và nhanh nhất mình tick cho
Cho mình kết quả sau 9 giờ tối nhé
Ta có :
6=2.3
7=7
8=2^3
9=3^2
Vậy bội chung nhỏ nhất của 6,7,8,9 là :
2^3x3^2x7=504
2)Gọi số đó là x .Ta có :
\(x-3\in B\left(8,10,12\right)\)
Mà :
8=2^3
10=2.5
12=2^2.3
Vậy x-3 là :
2^3.5.3=120
\(\Rightarrow X=120+3=123\)
Tìm số tự nhiên nhỏ nhất a khác 0 sao cho khi chia a cho các phân số 11/18 và 25/6 ta đều được kết quả là các số tự nhiên
Theo đề bài ta có : a/(11/18) = a*(18/11) thuộc N suy ra 18*a chia hết cho 11.
Lại có : a/(25/6) = a*(6/25) thuộc N suy ra 6*a chia hết cho 25.
Như vậy, a là bội chung của 11 và 25 nhưng để a nhỏ nhất thì a = BCNN (11, 25) = 275.
Vậy số cần tìm là 275 bạn nhé!
Chúc bạn học tốt!
1)tìm số tự nhiên nhỏ nhất khác 0 khi chia số đó cho 70 ,140,350,700 có cùng số dư là 5
2)tìm số tự nhiên nhỏ nhất chia 3 dư 1, chia cho 5 dư 3 và chia cho 7 dư 5
Một số tự nhiên lớn hơn 11 cho ta số dư giống nhau (đều khác 0) khi chia cho 3,5,7 hoặc 11. Tìm số nhỏ nhất thỏa mãn mô tả trên.
cần gấp
Bài 1: Tìm số tự nhiên x lớn nhất sao cho: 13 ; 15 ; 61 chia x đều dư 1.
Bài 2: Tìm số tự nhiên x nhỏ nhất biết khi chia x cho các số 5; 7; 11 thì được các số dư lần lượt là 3; 4; 6.