Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Xuân Bắc

Tìm số tự nhiên n khác 0 nhỏ nhất sao cho khi chia n cho 6/7 và chia n cho 3/4 ta đều được kết quả là số tự nhiên

Giải:

Vì khi chia n cho \(\dfrac{6}{7}\) và chia n cho \(\dfrac{3}{4}\) ta đều đc kết quả là số tự nhiên nên ta có:

n ⋮ \(\dfrac{6}{7}\) 

n ⋮ \(\dfrac{3}{4}\)                  ⇒n ∈ BCNN(6;3)

n nhỏ nhất 

6=2.3

3=3

⇒BCNN(6;3)=2.3=6

Vậy số tự nhiên n khác 0 nhỏ nhất là 6.

Chúc bạn học tốt!

Bommer
14 tháng 5 2021 lúc 8:06

theo bài ra , ta có :

- a : \(\dfrac{6}{7}\) = \(\dfrac{7n}{6}\) \(\in\) N \(\Rightarrow\) 7n chia hết cho 6 .

Mà ƯCLN ( 7 ; 6 ) = 1 \(\Rightarrow\) n chia hết cho 6 . ( 1 )

- n : \(\dfrac{3}{4}\) = \(\dfrac{4n}{3}\) \(\in\) N \(\Rightarrow\) 4n chia hết cho 3 . ( 2 )

Mà ƯCLN ( 4 ; 3 ) = 1 \(\Rightarrow\) n chia hết cho 3 . ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\) n \(\in\) BC ( 6 ; 3 ) .

Mà n nhỏ nhất \(\Rightarrow\) n = BCNN ( 6 ; 3 ) = 6 .

Vậy số cần tìm là 6 .

 


Các câu hỏi tương tự
pham tien khang
Xem chi tiết
 Tạ Phương Anh
Xem chi tiết
em yêu chị vãi Mikasa
Xem chi tiết
Phạm Đức Cường
Xem chi tiết
kimcherry
Xem chi tiết
Nguyễn Ngọc Minh Anh
Xem chi tiết
Lê Thanh Trúc
Xem chi tiết
Nguyễn Đức Thắng G
Xem chi tiết
nguyễn phương thảo
Xem chi tiết