Cmr: với mọi số nguyên n thì :
a) n^3-n chia hết cho 3
b) n^5-n chia hết cho 5
c) n^7-n chia hết cho 7
CMR:
a) Với mọi số nguyên n thì n3 - n chia hết cho 3
b) Với mọi số nguyên n thì n(n-1)(2n-1) chia hết cho 6
Giải giúp mình với
a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)
Nếu \(n=3k+1\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)
Nếu \(n=3k+2\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)
Vậy \(n^3-n⋮3\forall n\in Z\)
a) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 3
b) \(n\left(n-1\right)\left(2n-1\right)=n\left(n-1\right)\left(n+1+n-2\right)=\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n\)Ta có: \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3, mà(2,3)=1 nên \(\left(n-1\right)n\left(n+1\right)⋮6\)
Tương tự ta cũng được \(\left(n-2\right)\left(n-1\right)n⋮6\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n⋮6\)
\(\Rightarrow n\left(n-1\right)\left(2n-1\right)⋮6\left(đpcm\right)\)
Bài 1 :CMR với mọi n thuộc N , thì 60n + 75 chia hết cho 15 nhưng không chia hết cho 30
Bài 2 : Cho A = 1+4+4^2+.....+4^2011
Bài 3 ; Cho ( a-b ) chia hết cho 7 , CMR ( 4a - 3b ) chia hết cho 7
Cho ( 4a + 3b ) chia hết cho 7 , CMR ab gạch đầu chia hết cho 3
CMR :
a) Với mọi m,n thuộc N: B = 10n + 18n-1 chia hết cho 27
b) Nếu a+2b chia hết cho 5 <=>3a-4b chia hết cho 5
c) Nếu 3a-b+1 và 2a + 3b-1 đều chia hết cho 7 thì a,b đều chia cho 7 đều dư 3.
CMR với mọi số nguyên n thì
a, [( n+2)^2 - (n-2)^2] chia hết cho 8
b, [( n+7)^2 - (n-5)^2] chia hết cho 24
Bài 1:
$5a+8b\vdots 3$
$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$
$\Leftrightarrow 5a+8b-6b-6a\vdots 3$
$\Leftrightarrow 2b-a\vdots 3$
Ta có đpcm.
Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.
Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$
Mặt khác:
Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$
Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Tóm lại $A\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$
a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn
b: Đặt \(A=n^3+3n^2-n-3\)
\(=\left(n^3+3n^2\right)-\left(n+3\right)\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
n lẻ nên n=2k+1
=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)
=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)
c:
d: Đặt \(B=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-4\right)\left(n^2-4\right)\)
\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)
n chẵn và n>=4 nên n=2k
B=n(n-4)(n-2)(n+2)
\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)
\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)
Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp
nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)
=>B chia hết cho \(16\cdot24=384\)
CMR: với mọi số nguyên n thì n7-n chia hết cho 7
+ Với n = 0 thì n^7 - n = 0 chia hết cho 7 (đúng)
+ Giả sử k^7 - k chia hết cho 7 với k > 1
+ Ta cm : (k + 1)^7 - (k + 1) cũng chia hết cho 7
Ta có :
(k + 1)7 - (k + 1) = k7 + 7M + 1 - (k + 1)
= k^7 - k + 7M chia hết cho 7
Giải theo Fertma là được:
- Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố
Nên n^7 đồng dư n (mod 7)
=> n^7 - n đồng dư 0 (mod 7)
=> n^7 - n chia hết cho 7
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm)
+ n=0 => A(n)=0 chia hết cho 7
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7
+Với n=k+1 thì
A(k+1)= (k+1)^7-(k+1)
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k)
Do k^7-k chia hết cho 7
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7
Suy ra: A(k+1) chia hết cho 7
Vậy: n^7 - n chia hết cho 7
*Chú ý: A(k+1) nghĩ là biểu thức A có biến kà k+1 chứ ko phải là A nhân cho (k+1) nhé, tương tự A(n), A(k) cũng thế.
Mình đã cố gắng nhưng có thể vẫn còn sai sót mong các bạn thông cảm. Chúc bạn vui vẻ ^^!!
CMR với mọi n E Z thì:
a) n(n+5) - (n-3)(n+2) chia hết cho 6
b) (n-1)(n+1)-(n-7)(n-5) chia hết cho 12
a.
n(n + 5) - (n - 3)(n + 2)
= n2 + 5n - n2 - 2n + 3n + 6
= (n2 - n2) + (5n - 2n + 3n) + 6
= 6n + 6
= 6(n + 1)
Vậy n(n + 5) - (n - 3)(n + 2) chia hết cho 6.
b.
(n - 1)(n + 1) - (n - 7)(n - 5)
= n2 + n - n - 1 - n2 + 5n + 7n - 35
= (n2 - n2) + (n - n + 5n + 7n) - (1 + 35)
= 12n - 36
= 12(n - 3)
Vậy (n - 1)(n + 1) - (n - 7)(n - 5) chia hết cho 12.
a) n(n+5) - (n - 3)(n + 2) = n2 + 5n - n2 + 3n - 2n - 6
= 6n - 6 = 6(n - 1) chia hết cho 6
b) (n - 1)(n + 1) - (n - 7)(n - 5) = n2 - 1 - n2 + 7n + 5n - 35
= 12n - 36 = 12(n - 3) chia hết cho 12
a) n(n+5) - (n-3).(n+2)
= n2 + 5n - n2 - 2n + 3n + 6
= 6n + 6
= 6.(n+1)
Vậy n(n+5) - (n-3).(n+2) chia hết cho 6.
b) (n-1).(n+1) - (n-7).(n-5)
= n2 + n - n - 1 - n2 + 5n + 7n - 35
= 12n - 36
= 12.(n-3)
Vậy (n-1).(n+1) - (n-7).(n-5) chia hết cho 12
CMR với mọi n E Z thì:
a) n(n+5) - (n-3)(n+2) chia hết cho 6
b) (n-1)(n+1)-(n-7)(n-5) chia hết cho 12
a, n(n+5) - (n-3)(n+2)
= n2 + 5n - (n2 + 2n - 3n - 6)
= n2 + 5n - n2 - 2n + 3n + 6
= 6n + 6
= 6(n + 1) chia hết cho 6 (Đpcm)
b, (n-1)(n+1) - (n-7)(n-5)
= n2 + n - n - 1 - (n2 - 5n - 7n + 35)
= n2 - 1 - n2 + 12n - 35
= 12n - 36
= 12(n - 3) chia hết cho 12 (Đpcm)
a) n(n+5)-(n-3)(n+2)
=n^2+5n-(n^2+2n-3n+6)
=n^2+5n-n^2-2n+3n-6
=6n-6
=6(n-1) chia het cho 6 voi moi n thuoc z
b) (n-1)(n+1)-(n-7)(n-5)
=n^2+n-n-1-(n^2-5n-7n+35)
=n^2-1-n^2+12n-35
=12n-36
=12(n-3) chia het cho 12 voi moi n thuoc z