a.
n(n + 5) - (n - 3)(n + 2)
= n2 + 5n - n2 - 2n + 3n + 6
= (n2 - n2) + (5n - 2n + 3n) + 6
= 6n + 6
= 6(n + 1)
Vậy n(n + 5) - (n - 3)(n + 2) chia hết cho 6.
b.
(n - 1)(n + 1) - (n - 7)(n - 5)
= n2 + n - n - 1 - n2 + 5n + 7n - 35
= (n2 - n2) + (n - n + 5n + 7n) - (1 + 35)
= 12n - 36
= 12(n - 3)
Vậy (n - 1)(n + 1) - (n - 7)(n - 5) chia hết cho 12.
a) n(n+5) - (n - 3)(n + 2) = n2 + 5n - n2 + 3n - 2n - 6
= 6n - 6 = 6(n - 1) chia hết cho 6
b) (n - 1)(n + 1) - (n - 7)(n - 5) = n2 - 1 - n2 + 7n + 5n - 35
= 12n - 36 = 12(n - 3) chia hết cho 12
a) n(n+5) - (n-3).(n+2)
= n2 + 5n - n2 - 2n + 3n + 6
= 6n + 6
= 6.(n+1)
Vậy n(n+5) - (n-3).(n+2) chia hết cho 6.
b) (n-1).(n+1) - (n-7).(n-5)
= n2 + n - n - 1 - n2 + 5n + 7n - 35
= 12n - 36
= 12.(n-3)
Vậy (n-1).(n+1) - (n-7).(n-5) chia hết cho 12