a) \(n^3-n\)
\(=n\left(n^2-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\)
vì đó là tích của ba số tự nhiên liên tiếp nên chia hết cho 3
2 câu sau tương tự nhen
a) \(n^3-n\)
\(=n\left(n^2-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\)
vì đó là tích của ba số tự nhiên liên tiếp nên chia hết cho 3
2 câu sau tương tự nhen
CMR với mọi số nguyên n thì
a, [( n+2)^2 - (n-2)^2] chia hết cho 8
b, [( n+7)^2 - (n-5)^2] chia hết cho 24
CMR: với mọi số nguyên n thì n7-n chia hết cho 7
CMR với mọi n E Z thì:
a) n(n+5) - (n-3)(n+2) chia hết cho 6
b) (n-1)(n+1)-(n-7)(n-5) chia hết cho 12
chứng minh với mọi số nguyên n thì:
a) (n2+ 3n - 1)(n+ 2) - n3+2 chia hết cho 5
b) n(n+ 5)- (n-3)(n+2 ) chia hết cho 6
c) (n- 1)(n+1)- (n-7)(n- 5) chia hết cho 12
1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6
2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8
3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9
4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n
6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n
7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n
8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49
9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương
10/CMR với mọi số tự nhiên n>1:
a/ số n^4 +4 là hợp số
b/ số n^4+4k^4 là hợp số (k là số tự nhiên)
11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5
12/ Số 2^32+1 có là số nguyên tố không?
13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)
14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n
15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia
1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6
2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8
3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9
4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n
6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n
7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n
8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49
9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương
10/CMR với mọi số tự nhiên n>1:
a/ số n^4 +4 là hợp số
b/ số n^4+4k^4 là hợp số (k là số tự nhiên)
11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5
12/ Số 2^32+1 có là số nguyên tố không?
13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)
14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n
15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia
Chứng minh rằng với mọi số nguyên n thì
(n2+3n-1)(n+2)-n3+2 chia hết cho 5
n(n+5)-(n-3)(n+2) chia hết cho 6
(n-1)(n+1)-(n-7)(n-5) chia hết cho 12
dùng phương pháp qui nạp
cmr mọi số nguyên dương n thì:
a. 3^(3n+1)+40n-67 chia hết cho 64
b.3^(3n+2)+5*2^(3n+1) chia hết cho 19
c.2^(n+2)*3^n+5n-4 chia hết cho 25
d. 7^(n+2)+8^(2n+1) chia hết cho 57