Hãy chỉ ra 2 biến cố độc lập trong phép thử tung 2 đồng xu cân đối và đồng chất.
Gieo 3 đồng xu cân đối đồng chất một cách độc lập. Tính xác suất của biến cố sau:
a) A: cả 3 đồng xu đều ngửa.
b) B: 1 đồng xu sấp 2 đồng xu ngửa.
c) C: có ít nhất 2 đồng xu ngửa .
d) D: có không quá 2 đồng xu sấp.
a: n(A)=1
n(omega)=216
=>P(A)=1/216
b: \(B=\left\{\left(SNN\right);\left(NSN\right);\left(NNS\right)\right\}\)
=>n(B)=3
=>P(B)=3/216=1/72
c: \(C=\left\{\left(NNS\right);\left(NNN\right);\left(SNN\right);\left(NSN\right)\right\}\)
=>P(B)=4/216=1/54
d: \(D=\left\{\left(SSN\right);\left(SNN\right);\left(NSN\right);\left(NNS\right);\left(NSS\right);\left(SNS\right)\right\}\)
=>P(D)=6/216=1/36
Giả sử T là phép thử :' Gieo một đồng xu cân đối và đồng chất 2 lần'
a) xác định biến cố A:"Cả 2 lần gieo là như nhau". đếm số phần tử biến cố A b)xác định biến cố B:"mặt sấp xuất hiện ít nhất 1 lần". đếm số phần tử biến cố B c) Hai biến cố A và B:"BIến cố nào có nhiều khả năng xảy ra hơn".tại sao?
Tung ba đồng xu cân đối và đồng chất. Xác định biến cố đối của mỗi biến cố sau và tính xác xuất của nó:
a) “Xuất hiện ba mặt sấp”
b) “Xuất hiện ít nhất một mặt sấp”
a) Biến cố đối của biến cố “Xuất hiện ba mặt sấp” là biến cố: “Xuất hiện ba mặt ngửa”
b) Biến cố đối của biến cố “Xuất hiện ít nhất một mặt sấp” là biến cố “Không xuất hiện mặt sấp nào”
Xét phép thử “Tung một đồng xu hai lần liên tiếp”. Tính xác suất của biến cố A: “Mặt xuất hiện của đồng xu ở cả hai lần tung là giống nhau”.
+) Không gian mẫu của phép thử là: \(\Omega {\rm{ }} = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}.\) Vậy \(n\left( \Omega \right) = 4\)
+) Các kết quả thuận lợi cho biến cố A là: \(A{\rm{ }} = {\rm{ }}\left\{ {SS;{\rm{ }}NN} \right\}\). Vậy \(n\left( A \right) = 2\)
+) Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)
tung 1 đồng xu cân đối đồng chất 20 lần, trong đó có 12 lần xuất hiện mặt ngửa. Tính xát suất của biến cố" Tung được mặt sấp"?
A. 8
B. 12
C. \(\dfrac{3}{5}\)
D. \(\dfrac{1}{5}\)
Vì tung đồng xu 20 lần mà có 12 lần mặt ngửa nên có 8 mặt sấp.
Xác suất của biến cố ''Tung được mặt sấp'' là: \(\dfrac{8}{20}=\dfrac{2}{5}\)
Đáp số: `2/5`.
Do đó: không có đáp án nào đúng cả.
Câu 1:gieo một đồng xu cân đối và đồng chất 2 lần>Xác suất của biến cố''2 lần gieo xuất hiện mặt khác nhau'' là
A.1 B.1/4 C.3/4 D.1/2
Câu 2:Gieo 1 con xúc sắc cân đối và đồng chất 1 lần.Xác suất biến cố''Số chấm xuất hiện là số nguyên tố'' là
A.1/2 B.2/3 C.2/3 D.1/6
Câu 1: Gieo 1 đồng tiền cân đối và đồng chất 2 lần
\(\Rightarrow n\left(\Omega\right)=2^2=4\)
Gọi A là biến cố cả hai lần xuất hiện mặt sấp
\(\Rightarrow A=\left\{SS\right\}\Rightarrow n\left(A\right)=1\)
Vậy \(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{1}{4}\)
Chọn B
Câu 2: Số phần tử không gian mẫu: \(n\left(\Omega\right)=6\)
Gọi biến cố A: “Số chấm là số nguyên tố xuất hiện”
\(A=\left\{2;3;5\right\}\)
\(\Rightarrow n\left(A\right)=3\)
Vậy \(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{3}{6}=\dfrac{1}{2}\)
Chọn A
Gieo đồng thời 1 đồng xu và 1 con xúc xắc. Hãy mô tả không gian mẫu của phép thử và tính xác suất của biến cố A : "Đồng xu xuất hiện mặt sấp và số chấm của con xúc xắc là số chia hết cho 2"
Không gian mẫu \(\Omega=\left\{S;N;1;2;3;4;5;6\right\}\)
\(\Rightarrow n\left(\Omega\right)=8\)
\(A=\left\{S;2;4;6\right\}\)
\(\Rightarrow n\left(A\right)=4\)
Xác suất của biến cố \(A\) :
\(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{4}{8}=\dfrac{1}{2}\)
Tung một đồng tiền đồng chất và cân đối ba lần. Kí hiệu Ak là biến cố.”lần giỏ thứ k xuất hiện mặt sấp”, với k=1,2,3. Hãy biểu diễn các biến cố sau qua các biến cố Ak và A không k A=“ cả 3 lần xuất hiện mặt sấp” B=“ cả 3 lần xuất hiện mặt ngửa” C=“ its nhất có một lần xuất hiện mặt sấp” D= “its nhất có 1 lần xuất hiện mặt ngửa”
Biến cố A: "Cả 3 lần xuất hiện mặt sấp"
=>\(A=\left\{A_1;A_2;A_3\right\}\)
Biến cố B: "Cả 3 lần xuất hiện mặt ngửa"
=>\(B=\left\{\overline{A_1};\overline{A_2};\overline{A_3}\right\}\)
Gieo 4 đồng xu cân đối và đồng chất. Xác định biến cố đối của mỗi biến cố sau và tính xác suất của nó
a) “Xuất hiện ít nhất ba mặt sấp”
b) “Xuất hiện ít nhất một mặt ngửa”
Tổng số kết quả có thể xảy ra của phép thử là \(n\left( \Omega \right) = {2^4}\)
a) Biến cố đối của biến cố “Xuất hiện ít nhất ba mặt sấp” là biến cố “ Xuất hiện nhiều nhất một mặt sấp”
Biến cố xảy ra khi trên mặt đồng xu chỉ xuất hiện một hoặc không có mặt sấp nào. Số kết quả thuận lợi cho biến cố là \(C_4^1 + 1 = 5\)
Xác suất của biến cố là \(P = \frac{5}{{{2^4}}} = \frac{5}{{16}}\)
b) Biến cố đối của biến cố “Xuất hiện ít nhất một mặt ngửa” là biến cố “ Không xuất hiện mặt ngửa nào”
Biến cố xảy ra khi tất cả các mặt đồng là mặt sấp. Chỉ có 1 kết quả thuận lợi cho biến cố
Xác suất của biến cố là \(P = \frac{1}{{{2^4}}} = \frac{1}{{16}}\)