Tìm ngiệm của các đa thức
a, g(x)= x^3 - 2x^2 + x
b, k(x) = x^3 + 5x^2 + 6x
a) Thu gọn và sắp xếp các hạng tử của đa thức sau theo lúy thừa giảm của biến
A(x)=5x^2-1/2x+8x^4-3x^2+9
b) Cho 2 đa thức
B(x)=12x^4+6x^3-1/2x+3,C(x)=-12x^4-2x^3+5x+1/2
Tính B(x)+C(x) và B(x)-C(x) tính nghiệm của đa thức K(x)=-6x+30
Cho 2 đa thức : f [ x ] = x^3 - 5x^2 + 3x + 2 + 3x^2 . g( x ) = -x^3 - x^2 + 6x - 2x^2 - 6x + 2 . a, Thu gọn và sắp xếp các hạng tử của đa thức f ( x ) , g ( x ) theo lũy thừa giảm dần của biến . b, tính f ( x ) + g( x ) và f ( x) - g ( x )
\(f\left(x\right)=x^3-2x^2+3x+2\)
\(g\left(x\right)=-x^3-3x^2+2\)
\(f\left(x\right)+g\left(x\right)=x^3-2x^2+3x+2+\left(-x^3\right)+3x^2+2\)
\(f\left(x\right)+g\left(x\right)=x^2+3x+4\)
\(f\left(x\right)-g\left(x\right)=x^3-2x^2+3x+2+x^3+3x^2-2\)
\(f\left(x\right)-g\left(x\right)=2x^3+x^2+3x\)
cho hai đa thức p (x) =5 (x) =5x^3-3x+7-xvà Q(x)=5x^3+2x-3+2x-x^2-2
a) thu gọn hai đợn thức p(x)vàQ(x)
b) tìm đa thức M(x)=P(x)+Q(x) và n(x) = p(x) -Q(x)
c) tìm ngiệm của đa thức M(x)
a, Ta có : \(P\left(x\right)=5x^3-3x+7-x=5x^3-4x+7\)
\(Q\left(x\right)=5x^3+2x-3+2x-x^2-2=5x^3-x^2+4x-5\)
b, Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
hay \(5x^3-4x+7+5x^3-x^2+4x-5=10x^3-x^2+2\)
Ta có ; \(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)
hay \(5x^3-4x+7-5x^3+x^2-4x+5=x^2-8x+12\)
c, phải là tìm nghiệm N(x) chứ ?
ngịêm là m mà vì đề bài Q(x)=-5x^3
Cho đa thức
P(x)=5+x^3-2x+4x^3+3x^2-10
Q(x)=4-5x^3+2x^2-x^3+6x+11x^3-8x
a) Thu gọn và sắp xếp các đa thức trên luỹ thừa giảm dần của biến
b) Tính P(x)-Q(x), P(x)+Q(x)
c) Tìm nghiệm của đa thức P(x)-Q(x)
d)Cho các đa thức A=5x^3y^2, B=-7/10x^3y^2^2 Tìm đa thức C=A.B và xác định phần hệ sô,phần biến và bậc của đơn thức đó
a: P(x)=5x^3+3x^2-2x-5
\(Q\left(x\right)=5x^3+2x^2-2x+4\)
b: P(x)-Q(x)=x^2-9
P(x)+Q(x)=10x^3+5x^2-4x-1
c: P(x)-Q(x)=0
=>x^2-9=0
=>x=3; x=-3
d: C=A*B=-7/2x^6y^4
1. Cho đa thức \(A=-6x^3+5x-2x^2+6x^3-2x+5x^2\)
a) Rút gọn đa thức A
b) Tìm hệ số cao nhất và hệ số tự do của đa thức A
2. Cho các đa thức \(f\left(x\right)=x^3-3x^2+6x-8\). \(g\left(x\right)=-6x^2+x^3-8+12x\)
a) Tính f(x) + g(x)
b) Tính f(1)
c) Tìm x để f(x) - g(x) = 0
"Giúp mình với ngày mai mình đi học rồi ! "
cho 2 đa thức
A(X) = 5X^4-5 + 6X^3 +X^4 -5X^-12
B(X) = 8X^4 +2X^3 -2X^4+4X^3 -5X -15 -2X^2
a) thu gon A (X) , B(X) VÀ sắp xếp các đa thức theo thứ tự giảm dần
b) tìm nghiệm của đa thức C(x) , biết C(X) = A(X)-B(X)
a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12
= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x
= 6x4 - 17 + 6x3 - 5x
= 6x4 + 6x3 - 5x - 17
B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2
= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2
= 4x4 + 6x3 - 5x - 15 - 2x2
= 4x4 + 6x3 - 2x2 - 5x - 15
b) C(x) = A(x) - B(x)
= 6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)
= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15
= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2
= 2x4 - 2 + 2x2
= 2x4 + 2x2 - 2
cho hai đa thức:f(x)=2x^2+6x^4-3x^3+2011,g(x)=2x^3-5x^2-3x^4-2012 a,sắp xếp các hạng tử của f(x) ,g(x) theo lũy thừa giảm dần của biến b,f(x)+g(x),f(x)-g(x
a, \(f\left(x\right)=2x^2+6x^4-3x^3+2011\)
\(=6x^4-3x^3+2x^2+2011\)
\(g\left(x\right)=2x^3-5x^2-3x^4-2012\)
\(=-3x^4+2x^3-5x^2-2012\)
b, \(f\left(x\right)+g\left(x\right)=6x^4-3x^3+2x^2+2011-3x^4+2x^3-5x^2-2012\)
\(=\left(6x^4-3x^4\right)+\left(2x^3-3x^3\right)+\left(2x^2-5x^2\right)+\left(2011-2012\right)\)
\(=3x^4-x^3-3x^2-1\)
\(f\left(x\right)-g\left(x\right)=6x^4-3x^3+2x^2+2011-\left(-3x^4+2x^3-5x^2-2012\right)\)
\(=6x^4-3x^3+2x^2+2011+3x^4-2x^3+5x^2+2012\)
\(=\left(6x^4+3x^4\right)-\left(3x^3+2x^3\right)+\left(2x^2+5x^2\right)+\left(2011+2012\right)\)
\(=9x^4-5x^3+7x^2+4023\)
cho đa thức f(x)= -x^3 - 5x^2 + x+ 5x^3 +5x-9 ; g(x)= -3x^3 + x^2 + x- 6x+ 3x^2 -15
a) thu gọn cac đa thức tren
b)tinh h(x)= f(x) +g(x); k(x)=f(x)-g(x)
c) tim bac của đa thức h(x)
d) tim gia trị cua đa thức k(x) tại x=3/2
1. Cho f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4;
g(x) = x5 - 9 + 2x2 + 7x4 + 2x3 - 3x
a) Sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.
b) Tính tổng h(x) = f(x) + g(x)
c) Tìm nghiệm của đa thức h(x)
2. Cho A(x) = 6x3 + 5x2; B(x) = x3 - x2; C(x) = -2x3 + 4x2
a) Tìm D(x) = A(x) + B(x) - C(x)
b) Tìm nghiệm của đa thức D(x)
3. Tìm m để x = -1 là nghiệm của đa thức M(x) = x2 - mx + 2
4. Cho đa thức K(x) = a + b(x-1) + c(x-1)(x-2)
Tìm a,b,c biết K(1) = 1; K(2) = 3; K(0) = 5
3) tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2
\(\Rightarrow M\left(x\right)=x^2-mx+2\)
\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)
\(\Leftrightarrow1-m\left(-1\right)=-2\)
\(\Leftrightarrow m\left(-1\right)=3\)
\(\Leftrightarrow m=-3\)
vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)
4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)
\(\Leftrightarrow K\left(2\right)=a+b=3\)
\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)
\(\Leftrightarrow a+\left(-b\right)+c2=5\)
ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
vậy \(a=1;b=2;c=3\)
1. a) Sắp xếp :
f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9
g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9
b) h(x) = f(x) + g(x)
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )
= 3x2- 3x
c) h(x) có nghiệm <=> 3x2 - 3x = 0
<=> 3x( x - 1 ) = 0
<=> 3x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 1
Vậy nghiệm của h(x) là x= 0 hoặc x = 1
2. D(x) = A(x) + B(x) - C(x)
= 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )
= 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2
= ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 )
= 9x3
b) D(x) có nghiệm <=> 9x3 = 0 => x = 0
Vậy nghiệm của D(x) là x = 0
3. M(x) = x2 - mx + 2
x = -1 là nghiệm của M(x)
=> M(-1) = (-1)2 - m(-1) + 2 = 0
=> 1 + m + 2 = 0
=> 3 + m = 0
=> m = -3
Vậy với m = -3 , M(x) có nghiệm x = -1
4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )
K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1
=> a + 0b + c.0.(-1) = 1
=> a + 0 = 1
=> a = 1
K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3
=> 1 + 1b + c.1.0 = 3
=> 1 + b + 0 = 3
=> b + 1 = 3
=> b = 2
K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5
=> 1 + 5(-1) + c(-1)(-2) = 5
=> 1 - 5 + 2c = 5
=> 2c - 4 = 5
=> 2c = 9
=> c = 9/2
Vậy a = 1 ; b = 2 ; c = 9/2
1. a) f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9
g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9
b) h(x) = f(x) + g(x) = 3x2 + x
c) h(x) = 0 => 3x2 + x = 0 => x(3x + 1) = 0 => x = 0 hoặc 3x + 1 = 0
=> x = 0 hoặc x =\(\frac{-1}{3}\)
2. a) D(x) = (6x3 + 5x2) + (x3 - x2) - (-2x3 + 4x2)
= 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2 = 9x3
b) D(x) = 0 => 9x3 = 0 => x = 0
3. Ta có M(-1) = 0 => (-1)2 - m.(-1) + 2 = 0 => 1 + m + 2 = 0 => m = -3
4. K(1) = 1 => a = 1. Ta được K(x) = 1 + b(x-1) + c(x-1)(x-2)
Lại có K(2) = 3 => 1 +b.(2-1) + c.(2-1)(2-2) = 3
=> 1 + b = 3 => b = 2
Vậy K(1) = 1 + 2(x-1) + c(x-1)(x-2) = 2x - 1 + c(x-1)(x-2)
K(0) = 5 => -1 + c(-1).(-2) = 5 => c = 3
Ta được a = 1; b = 2; c = 3