3. Cho tam giác ABC có cạnh AB = AC . Gọi AB' là tia đối của tia AB , AD là tia phân giác của góc B'AC . CMR : AD // BC
(Vẽ hình 1,2,3 luôn nhé!!)
1. Cho tam giác ABC có AB = AC . Trên 2 cạnh AB và AC lần lượt lấy D và E sao cho AD = AE
CTR
DE // BC
2 . Cho tam giác ABC có AB = AC . Trên tia đối của tia BC lấy điểm D, trên tia đối của BA lấy điểm E sao cho ED = eb
CMR
ED // AC
3. Cho tam giác ABC có AB = AC . gọi AB' là tia đối của tia AB , AD pg của góc B'AC
CMR
AD // BC
4 . Cho tam giác ABC vuông tại A , M là trung điểm cạnh BC
CMR
AM= 1/2 BC
Cho ∆ABC có AB=AC, Gọi AB’ là tia đối của tia AB, AD là tia phân giác của góc B’AC. CMR: AD//BC
Xét tam giac BAC va tam giac DAC có:
BA=AC (gt)
C\(_1\)=C\(_2\)
AC là canh chung
=> tam giac BAC = tam giac DAC
BC=DC (hai canh tuong ung )
=> BC//DC
Cho tam giác ABC có AB=AC,BC<AB, gọi M là trung điểm của BC.
a,CMR: tam giác ABM=ACM. Từ đó suy ra AM là tia phân giác của góc BAC
b,Trên cạnh AB lấy D sao cho B=CD. Kẻ tia phân giác của góc BCD,tia nay cắt BD tại N.CMR: CN vuông góc với BD
c,Trên tia đối CA lấy E sao cho CE=AD . CMR : góc BCE=ADC
d, CMR: BA=BE
cho tam giác ABC có 3 góc nhọn ( AB < AC ) trên cạnh AC lấy điểm M sao cho AB = AM gọi AD là tia phân giác của góc BAC (D thuộc BC ) . từ D kẻ DI vuông góc với AB , DK vuông góc với AC ( I thuộc AB , K thuộc AC ).trên tia đối của tia AB lấy điểm P sao cho A là trung điểm của PI. CM: AD song song với PK .
cần cm IB=KM từ đó có AI=AK . suy ra tgAPK cân tại A. suy ra góc AKP=gocsIAD. từ đó có dpcm
Cho tam giác ABC có AC<AB. Trên tia AC lấy điểm M sao cho AB=AM. AD là tia phân giác của góc BAC (D thuộc BC).
a) Cm: Tam giác ABC = tam giác AMD
b) Gọi I là giao điểm của AD và BM. Cm: Tam giác ABI=Tam giác AMI. Từ đó suy ra: AD vuông góc BM.
c) Trên tia đối của tia AC lấy điểm Q sao cho AQ=AM. Trên tia đối của tia AB lấy điểm P sao cho AB=AP. Cm: PQ song song BM.
d) Gọi K là trung điểm của PQ. Cm: A, K, I thẳng hàng
CÁC BẠN GIÚP MÌNH NHÉ !
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh: a) Tam giác ADB = ADC; b) AD là tia phân giác của góc BAC; c) AD vuông góc BC
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh
a) Tam giác ADB = ADC
b) AD là tia phân giác của góc BAC
c) AD vuông góc BC
Cho tam giác ABC có AB AC . Trên tia đối của tia CA lấy điểm D sao cho CD AB . Gọi H , K lần lượt là trung điểm của AD, BC . Trung trực AD, BC cắt nhau tại I. Vẽ IE vuông góc AB tại E .a) Chứng minh Tam giác IABtâm giác IDC và AI là phân giác của BAC .b) Chứng minh BE HC và AI là đường trung trực của đoạn EH .c) Từ C kẻ đường thẳng song song với AB ,cắt đường thẳng EH tại F .Chứng minhTam giác BKE Tam giác CKF và E , K , F thẳng hàng.
vẽ hình hộ mik vs
a: Xét ΔIAB và ΔIDC có
IA=ID
AB=DC
IB=IC
=>ΔIAB=ΔIDC
=>góc IAB=góc IDC=góc IAD
=>AI là phân giác của góc BAC
b: Xét ΔAEI vuông tại E và ΔAHI vuông tại H có
AI chung
góc EAI=góc HAI
=>ΔAEI=ΔAHI
=>AE=AH; IE=IH
=>AI là trung trực của EH
1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.
2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.
3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.
4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.
5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.
Trong tam giác ABC vuông tại A có góc B = 60 độ
a, trên cạnh BC lấy điểm D sao cho BA= BD qua D vẽ đường vuông góc với BC cắt tia đối của tia AB tại E . C/M tam giác ABC và tam giác DBE
c, gọi H là giao điểm của ED và AD. C/m BH là tia phân giác của góc ABC
d, qua B vẽ đường vuông góc với AB cắt ED tại K . C/m tam giác HBK đều
e, AB+ AC -BC/2 < AD< AD+AC+BC/2
hép mi