Xét tam giac BAC va tam giac DAC có:
BA=AC (gt)
C\(_1\)=C\(_2\)
AC là canh chung
=> tam giac BAC = tam giac DAC
BC=DC (hai canh tuong ung )
=> BC//DC
Xét tam giac BAC va tam giac DAC có:
BA=AC (gt)
C\(_1\)=C\(_2\)
AC là canh chung
=> tam giac BAC = tam giac DAC
BC=DC (hai canh tuong ung )
=> BC//DC
3. Cho tam giác ABC có cạnh AB = AC . Gọi AB' là tia đối của tia AB , AD là tia phân giác của góc B'AC . CMR : AD // BC
(Vẽ hình 1,2,3 luôn nhé!!)
1. Cho tam giác ABC có AB = AC . Trên 2 cạnh AB và AC lần lượt lấy D và E sao cho AD = AE
CTR
DE // BC
2 . Cho tam giác ABC có AB = AC . Trên tia đối của tia BC lấy điểm D, trên tia đối của BA lấy điểm E sao cho ED = eb
CMR
ED // AC
3. Cho tam giác ABC có AB = AC . gọi AB' là tia đối của tia AB , AD pg của góc B'AC
CMR
AD // BC
4 . Cho tam giác ABC vuông tại A , M là trung điểm cạnh BC
CMR
AM= 1/2 BC
Cho tam giác ABC có AB =Ac. Tia phân giác của góc A cát BC tại D
a) chứng minh: tam giác ABC = tam giác ACD
b) Trên tia đối cảu tia AD lấy điểm E sao cho AE=AD và tren tia đối của tia AB lấy điểm F sao cho AF = AB chúng minh EF= AD
c) gọi H là trung điểm của FC chúng minh AH là tua phân giác của góc CAF
d) chứng minh AH// BC
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh: a) Tam giác ADB = ADC; b) AD là tia phân giác của góc BAC; c) AD vuông góc BC
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh
a) Tam giác ADB = ADC
b) AD là tia phân giác của góc BAC
c) AD vuông góc BC
Cho △ABC (AB<AC). AD là tia phân giác của góc BAC (D=BC). Trên cạnh AC, lấy điểm M sao cho AM=AB.
a) CMR △ABD=△AMD.
b) Gọi I là giao điểm của AD và BM. CMR I là trung điểm của BM và AI ⊥ BM.
c) Gọi K là trung điểm của AM, trên tia đối của tia KB lấy điểm P sao cho KB=KP. CMR MP // AB.
d) Trên tia đối của tia MP lấy điểm E sao cho MP=ME. CMR 3 điểm A, I, E thẳng hàng.
Cho tam giác ABC có AB=AC,BC<AB, gọi M là trung điểm của BC.
a,CMR: tam giác ABM=ACM. Từ đó suy ra AM là tia phân giác của góc BAC
b,Trên cạnh AB lấy D sao cho B=CD. Kẻ tia phân giác của góc BCD,tia nay cắt BD tại N.CMR: CN vuông góc với BD
c,Trên tia đối CA lấy E sao cho CE=AD . CMR : góc BCE=ADC
d, CMR: BA=BE
Cho tam giác ABC có AB < AC. Trên tia đối của tia CA lấy điểm D sao cho CD = AB. Gọi P,Q là trung điểm của AD, BC, và I là giao điểm các đường vuông góc với AD và BC tại P và Q.
a) Chứng minh ∆AIB = ∆DIC
b) Chứng minh AI là tia phân giác của góc BAC
c) Kẻ IE vuông góc với AB, chứng minh: \(AE=\dfrac{1}{2}AD\)
cho tam giác ABC có 3 góc nhọn ( AB < AC ) trên cạnh AC lấy điểm M sao cho AB = AM gọi AD là tia phân giác của góc BAC (D thuộc BC ) . từ D kẻ DI vuông góc với AB , DK vuông góc với AC ( I thuộc AB , K thuộc AC ).trên tia đối của tia AB lấy điểm P sao cho A là trung điểm của PI. CM: AD song song với PK .
Cho tam giác ABC có AM = AC. Tia phân giác của góc BAC cắt BC tại D.
a/ Chứng minh tam giác ABD = tam giác ACD.
b/ Trên tia đối của tia AD lấy điểm E sao cho AE = AD và trên tia đối của tia AB lấy điểm F sao cho AF = AB. Chứng minh AF = AB.
c/ Gọi H là trung điểm của FC. Chứng minh AH là phân giác của góc CAF.
d/ Chứng minh AH // BC