Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 7 2017 lúc 4:50

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giả sử có một mặt cầu tiếp xúc với các cạnh AB, AC, AD, BC, CD, BD của tứ diện ABCD lần lượt tại M, N, P, Q, R, S. Khi đó AM, AN, AP là các tiếp tuyến cùng xuất phát từ A nên AM = AN = AP.

Lập luận tương tự ta có: BM = BQ = BS; CQ = CR = CN; DR = DS = DP

Vậy AB + CD = AM + MB + CR + RD = AN + BS + CN + DS = AN + NC + BS + SD = AC + BD

Bằng lí luận tương tự ta chứng minh được AB + CD = AC + BD = AD + BC

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:25

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
20 tháng 5 2017 lúc 16:21

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 11 2019 lúc 9:21

Giải bài 8 trang 49 sgk Hình học 12 | Để học tốt Toán 12

Gọi mặt cầu S(O; R) tiếp xúc với các cạnh của hình tứ diện đã cho lần lượt tại M, N, P, Q ,R và S.

* Ta chứng minh: AM = AR = AQ.

Do mặt cầu tiếp xúc với ba cạnh AB, AC và AD lần lượt tại M; R và Q nên :

Giải bài 8 trang 49 sgk Hình học 12 | Để học tốt Toán 12

Xét ba tam giác OAM; OAR và OAQ có:

Giải bài 8 trang 49 sgk Hình học 12 | Để học tốt Toán 12

* Chứng minh tương tự ta có:

BM = BN = BS = b

CP = CN = CR = c.

DP = DQ = DS = d

Ta có:

Giải bài 8 trang 49 sgk Hình học 12 | Để học tốt Toán 12

Do đó, AB + CD = AC + BD = AD + BC.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 11 2018 lúc 5:10

Gọi I và J lần lượt là trung điểm của AB và CD. Vì ΔACD = ΔBDC nên các tiếp tuyến tương ứng của chúng bằng nhau, do đó AJ = BJ. Từ đó suy ra IJ  ⊥  AB. Tương tự, IJ ⊥ CD. Vậy IJ là đường vuông góc chung của AB và CD.

Làm tương tự đối với các cặp cạnh đối diện khác ta chứng minh được rằng đường nối trung điểm của các cặp cạnh đối diện là đường vuông góc chung của cặp cạnh đó. Do đó các đường đó đồng quy tại O là trung điểm của mỗi đường.

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi (P) là mặt phẳng qua AB và song song với CD, (Q) là mặt phẳng qua CD và song song với AB; A', B' lần lượt là hình chiếu vuông góc của A, B lên (Q); C', D' lần lượt là hình chiếu vuông góc của C, D lên (P). Dễ thấy AC'BD'.A'CB'D là hình hộp chữ nhật. Đường nối hai tâm của mỗi cặp mặt đối diện của hình hộp chữ nhật đó chính là đường vuông góc chung của các cặp cạnh đối diện của tứ diện ABCD. Do đó chúng đôi một vuông góc với nhau.

Sách Giáo Khoa
Xem chi tiết
Hai Binh
27 tháng 4 2017 lúc 17:36

Hỏi đáp Toán

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 5 2017 lúc 16:23

Từ hệ thức trên ta suy ra định lí: “Nếu tứ diện ABCD có AB ⊥ CD, AC  ⊥  DB, nghĩa là  AB → . C D →  = 0 và  AC → . D B →  = 0 thì  AD → . B C → = 0 và do đó AD ⊥ BC.”

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 3 2018 lúc 4:21

Chọn đáp án A.

Chú ý: Tứ diện đều chỉ là trường hợp đặc biệt của một số tứ diện hoặc một hình chóp tam giác. Chúng ta có các kết quả như sau:

1. Cho khối chóp tam giác đều có cạnh đáy bằng a và cạnh bên bằng b. Thể tích khối chóp tam giác đều bằng 

2. Cho khối tứ diện ABCD có  và các cạnh còn lại đều bằng a. Thể tích khối tứ diện ABCD là 

3. Cho khối tứ diện ABCD có AB = x, CD = y và các cạnh còn lại đều bằng a. Thể tích khối tứ diện ABCD là 

4. Cho khối tứ diện gần đều ABCD có AB = CD = a, AC = BD = b, AD = BC = c. Thể tích khối tứ diện ABCD là 

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
27 tháng 5 2017 lúc 8:01

Hình giải tích trong không gian