Cho P= \(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\). Tính giá trị lớn nhất của P
Cho các biểu thức A=\(\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\) và B=\(\dfrac{3}{\sqrt{x}-1}\) với x≥0, x≠1, x≠9
a) Tính giá trị của B khi x=4
b) Rút gọn biểu thức P=A-B
c) Tìm xϵN để biểu thức \(\dfrac{1}{P}\) đạt giá trị lớn nhất
a) Thay x=4 vào biểu thức \(B=\dfrac{3}{\sqrt{x}-1}\), ta được:
\(B=\dfrac{3}{\sqrt{4}-1}=\dfrac{3}{2-1}=3\)
Vậy: Khi x=4 thì B=3
b) Ta có: P=A-B
\(\Leftrightarrow P=\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x}-1}\)
\(\Leftrightarrow P=\dfrac{6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{6+x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
cho biểu thức A=\(\dfrac{2x+1}{x.\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\) và B=\(\dfrac{1+x.\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\)
a, tính giá trị của B khi x = \(4-2.\sqrt{3}\)
b, rút gọn biểu thức P=A.B
c,tính giá trị nhỏ nhất của Q=\(\sqrt{x}+\dfrac{1}{P}\)với (x>1)
\(a,B=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\\ B=x-\sqrt{x}+1-\sqrt{x}=\left(\sqrt{x}-1\right)^2\)
Mà \(x=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow B=\left(\sqrt{3}-1-1\right)^2=\left(\sqrt{3}-2\right)^2=7-4\sqrt{3}\)
\(b,P=AB=\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\\ P=\dfrac{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}=\sqrt{x}-1\\ c,Q=\sqrt{x}+\dfrac{1}{P}=\sqrt{x}+\dfrac{1}{\sqrt{x}-1}\\ Q=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+1\ge2\sqrt{1}+1=3\\ Q_{min}=3\Leftrightarrow\left(\sqrt{x}-1\right)^2=1\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=1\\1-\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\sqrt{x}=2\left(x>1\Leftrightarrow\right)x=4\left(tm\right)\)
a: \(B=\left(\sqrt{x}-1\right)^2=\left(\sqrt{3}-2\right)^2=7-4\sqrt{3}\)
b: \(A=\dfrac{2x+1-x+\sqrt{x}}{x\sqrt{x}-1}\cdot\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)
Cho biểu thức A=\(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\left(x-1\right)\)(\(x\ge0;x\ne1\))
a) Tính giá trị biểu thức A khi x=4
b) Rút gọn biểu thức A và tìm giá trị lớn nhất của A
Ta có :A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\) -\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\)
=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)-2
=\(\dfrac{-\sqrt{x}}{\sqrt{x}+1}\)
thay vào A=\(\dfrac{-2}{3}\)
b)
A=-1+\(\dfrac{1}{\sqrt{x}+1}\) \(\ge\) -1+\(\dfrac{1}{1}\)=1(vì \(\sqrt{x}\)\(\ge\) 0)
Dấu bằng xẩy ra\(\Leftrightarrow\) x=0
chỗ đó cho thêm x-1 nha
đấu >= thay thành <= rùi nhân thêm x-1>=-1 nữa là lớn nhất bằng 0
Cho hai biểu thức: A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) và B = \(\dfrac{x+5}{x-1}-\dfrac{3}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\) với x ≥ 0; x ≠ 1; x ≠ 9.
a) Tính A khi x = 0,25
b) Rút gọn B
c) Cho P = A.B. Tìm giá trị lớn nhất của P với x là số tự nhiên lớn hơn 9.
a, Thay x = 1/4 vào A ta được :
\(A=\dfrac{\dfrac{1}{2}+1}{\dfrac{1}{2}-3}=\dfrac{\dfrac{3}{2}}{-\dfrac{5}{2}}=-\dfrac{3}{5}\)
b, Với x >= 0 ; x khác 1 ; 9
\(B=\dfrac{x+5-3\left(\sqrt{x}+1\right)+\sqrt{x}-1}{x-1}=\dfrac{x-2\sqrt{x}+1}{x-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
Cho biểu thức
P=\(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
a) Rút gọn biểu thức
b) Tìm giá trị của x khi p=4
c) tÌM GIÁ TRỊ NHỎ NHẤT CỦA P
d) Tính giá trị của P khi x=3-\(2\sqrt{2}\)
\(a,P=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\left(x\ge0;x\ne1\right)\\ P=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(x+16\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\\ P=\dfrac{x+16}{\sqrt{x}+3}\\ b,P=4\Leftrightarrow\dfrac{x+16}{\sqrt{x}+3}=4\\ \Leftrightarrow x+16=4\sqrt{x}+12\\ \Leftrightarrow x-4\sqrt{x}+4=0\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\\ \Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
\(c,P=\dfrac{x+16}{\sqrt{x}+3}=\dfrac{x-9+25}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}\\ P=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\ge2\sqrt{\left(\sqrt{x}+3\right)\cdot\dfrac{25}{\sqrt{x}+3}}-6=2\cdot5-6=4\\ P_{min}=4\Leftrightarrow\left(\sqrt{x}+3\right)^2=25\Leftrightarrow\sqrt{x}+3=5\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,x=3-2\sqrt{2}\Leftrightarrow\sqrt{x}=\sqrt{2}-1\\ \Leftrightarrow P=\dfrac{3-2\sqrt{2}+16}{\sqrt{2}-1+3}=\dfrac{19-2\sqrt{2}}{\sqrt{2}+2}\\ P=\dfrac{\left(19-2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}=\dfrac{42-23\sqrt{2}}{2}\)
cho biểu thức: P = \(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)
a, Rút gọn P
b, Tìm giá trị của P khi x = 7 - \(4\sqrt{3}\)
c, Tìm x để P có giá trị lớn nhất
Cho A=\(\dfrac{2\sqrt{x}-4}{\sqrt{x}+1}\)
a, \(x\in N\) ? để A < 0
b, CMR A < 2
c, x ? để A < 1
d, x ? để A > -1
e, x ? để \(A\le\dfrac{-x+6\sqrt{x}-8}{\sqrt{x}+1}\)
f, Giá trị nhỏ nhất của A ?
g, \(B=A+\dfrac{9}{\sqrt{x}+1}\), Giá trị lớn nhất cuẩ B ?
h, \(x\notin N\) ? để \(A\in Z\)
a: Để A<0 thì 2*căn x-4<0
=>căn x<2
=>0<=x<4
=>\(x\in\left\{0;1;2;3\right\}\)
b: \(A-2=\dfrac{2\sqrt{x}-4-2\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{-6}{\sqrt{x}+1}< 0\)
=>A<2
c: A<1
=>A-1<0
=>\(\dfrac{2\sqrt{x}-4-\sqrt{x}-1}{\sqrt{x}+1}< 0\)
=>căn x-5<0
=>0<=x<25
d: A>-1
=>A+1>0
=>\(\dfrac{2\sqrt{x}-4+\sqrt{x}+1}{\sqrt{x}+1}>0\)
=>3*căn x-3>0
=>x>1
e: A<=(-x+6căn x-8)/(căn x+1)
=>2*căn x-4<=-x+6căn x-8
=>x-4căn x+4<=0
=>x=4
Cho A=(\(\dfrac{\sqrt{x}-2}{x-1}\)-\(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\)) .\(\dfrac{\left(x-1\right)^2}{2}\)với 0<x<1 ( không sai đề nhé )
a.Rút gọn A
b.Tính giá trị của A khi x là nghiệm của phương trình x-3\(\sqrt{x}\)+2=0
c.Tính giá trị lớn nhất của A
P=\(\dfrac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
a) RG P b)Tìm giá trị lớn nhất của P
a.\(P=\dfrac{3\left(x+\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(ĐK:x\ge0;x\ne1;x\ne-2\)
\(P=\dfrac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3x+3\sqrt{x}-9+x-\sqrt{x}+3\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)
b.\(P=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}+2}+\dfrac{2}{\sqrt{x}+2}\)
\(=1+1+1+\dfrac{2}{\sqrt{x}+2}\)
Để P lớn nhất thì \(\sqrt{x}+2\) nhỏ nhất
Mà \(\sqrt{x}+2\ge2\) \(\Rightarrow Min=2\)
\(\Rightarrow P\le1+1+1+\dfrac{2}{2}=1+1+1+1=4\)
Vậy \(P_{max}=4\) khi \(x=0\)