cho biểu thức A=\(\dfrac{2x+1}{x.\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\) và B=\(\dfrac{1+x.\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\)
a, tính giá trị của B khi x = \(4-2.\sqrt{3}\)
b, rút gọn biểu thức P=A.B
c,tính giá trị nhỏ nhất của Q=\(\sqrt{x}+\dfrac{1}{P}\)với (x>1)
Cho biểu thức A=\(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\left(x-1\right)\)(\(x\ge0;x\ne1\))
a) Tính giá trị biểu thức A khi x=4
b) Rút gọn biểu thức A và tìm giá trị lớn nhất của A
Cho hai biểu thức: A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) và B = \(\dfrac{x+5}{x-1}-\dfrac{3}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\) với x ≥ 0; x ≠ 1; x ≠ 9.
a) Tính A khi x = 0,25
b) Rút gọn B
c) Cho P = A.B. Tìm giá trị lớn nhất của P với x là số tự nhiên lớn hơn 9.
Cho A=\(\dfrac{2\sqrt{x}-4}{\sqrt{x}+1}\)
a, \(x\in N\) ? để A < 0
b, CMR A < 2
c, x ? để A < 1
d, x ? để A > -1
e, x ? để \(A\le\dfrac{-x+6\sqrt{x}-8}{\sqrt{x}+1}\)
f, Giá trị nhỏ nhất của A ?
g, \(B=A+\dfrac{9}{\sqrt{x}+1}\), Giá trị lớn nhất cuẩ B ?
h, \(x\notin N\) ? để \(A\in Z\)
P=\(\dfrac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
a) RG P b)Tìm giá trị lớn nhất của P
\(P=\dfrac{1}{\sqrt{x}-2}-\dfrac{2}{\sqrt{x}+1}+\dfrac{2\sqrt{x}-7}{x-\sqrt{x}-2} \) với x\(\ge\)0;x\(\ne\)44
a) CM \(P=\dfrac{1}{\sqrt{x}-2}
\)
b) tìm giá trị lớn nhất của P
Tìm giá trị nguyên của x để biểu thức P=\(\dfrac{4+\sqrt{x}}{1+\sqrt{x}}\) có giá trị lớn nhất
Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = \(\dfrac{\sqrt{x}}{x+3\sqrt{x}+4}\)
Cho biểu thức sau: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
1, Rút gọn P
2, Tính giá trị nhỏ nhất của P
3, Tìm \(x\in Z\) sao cho \(Q=\dfrac{2\sqrt{x}}{P}\in Z\)