Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
8 tháng 12 2023 lúc 21:31

Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)

\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)

\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\) 

(vì \(2013=3.671=3\left(xy+yz+zx\right)\))

\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)

\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)

\(=\dfrac{1}{x+y+z}\)

ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)

\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)

\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))

Vậy ta có đpcm.

Lê Thu Phương Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2022 lúc 20:22

a: =>x^2+y^2+z^2-4x+2y-6z+14=0

=>x^2-4x+4+y^2+2y+1+z^2-6z+9=0

=>(x-2)^2+(y+1)^2+(z-3)^2=0

=>x=2; y=-1; z=3

b: \(\left(x+y+z\right)\cdot\left(xy+yz+xz\right)\)

\(=x^2y+xyz+x^2z+xy^2+y^2z+xyz+xyz+yz^2+xz^2\)

\(=x^2y+xy^2+y^2z+x^2z+yz^2+xz^2+3xyz\)

Theo đề, ta có:

\(x^2y+xy^2+y^2z+x^2z+yz^2+xz^2+2xyz=0\)

\(\Leftrightarrow x^2y+2xyz+yz^2+xy^2+2xzy+xz^2+zx^2-2xyz+zy^2=0\)

\(\Leftrightarrow y\left(x+z\right)^2+x\left(y+z\right)^2+z\left(x+y\right)^2=0\)

=>x=y=z=0

=>x^2013+y^2013+z^2013=(x+y+z)^2013

lý canh hy
Xem chi tiết
hoa học trò
7 tháng 1 2019 lúc 20:21

giờ nhân cả tử và mẫu mỗi phân thức vs mỗi tử của nó rồi sử dụng BDT bunhiacopxki là ra thôi bn

Đen đủi mất cái nik
8 tháng 1 2019 lúc 7:51

\(\frac{x^2}{x^3-xyz+2013x}+\frac{y^2}{y^3-xyz+2013y}+\frac{z^2}{z^3-xyz+2013z}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3.\left(xy+yz+zx\right)\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx+3xy+3yz+3zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x+y+z\right)^2}=\frac{1}{x+y+z}\)

Kiệt Nguyễn
16 tháng 2 2020 lúc 7:56

\(VT=\text{Σ}_{cyc}\frac{x}{x^2-yz+2013}=\text{Σ}_{cyc}\frac{x^2}{x^3-xyz+2013x}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)(bđt Cauchy - Schwarz dạng Engel)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+2013\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx+2013\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+zx\right)+2013\right]}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[\left(x+y+z\right)^2-3.671+2013\right]}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

(Dấu "=" xảy ra khi x = y = z = \(\frac{\sqrt{2013}}{3}\))

Khách vãng lai đã xóa
FFPUBGAOVCFLOL
Xem chi tiết
Hoàng Nguyễn Văn
15 tháng 2 2020 lúc 22:07

Ta có \(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)mà xy+yz+zx=0

\(\Rightarrow x^2+y^2+z^2=0\left(1\right)\)

Lại có: \(x^2,y^2,z^2\ge0\Rightarrow x^2+y^2+z^2\ge0\)Kết hợp (1)

\(\Leftrightarrow x^2=y^2=z^2=0\Leftrightarrow x=y=z=0\)

Vậy \(T=\left(0-1\right)^{2013}+0^{2013}+\left(0+1\right)^{2013}=-1+0+1=0\)

Khách vãng lai đã xóa
Trí Tiên
15 tháng 2 2020 lúc 22:10

Ta có : \(x+y+z=0\)

\(\Rightarrow\left(x+y+z\right)^2=0\)

\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(\Rightarrow x^2+y^2+z^2=0\) ( Do \(xy+yz+zx=0\) )

\(\Rightarrow x^2+y^2+z^2=xy+yz+zx\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow x=y=z\)

Khi đó : \(x+y+z=3x=0\)

\(\Rightarrow x=0\Rightarrow x=y=z=0\)

Nên \(T=\left(0-1\right)^{2013}+0^{2013}+\left(0+1\right)^{2013}=0\)

Vậy : \(T=0\).

Khách vãng lai đã xóa
huynh van duong
15 tháng 2 2020 lúc 22:13

Ta có: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

mà xy+yz+zx=0 => \(x^2+y^2+z^2=0\)vì \(x^2>0;y^2>0;z^2>0\)

Suy ra: x=y=z=0. Thế số ta được T=0

Khách vãng lai đã xóa
QUan
Xem chi tiết
Hoàng Lê Bảo Ngọc
18 tháng 9 2016 lúc 10:15

\(\frac{x}{x^2-yz+2013}+\frac{y}{y^2-zx+2013}+\frac{z}{z^2-xy+2013}\)

\(=\frac{1}{\frac{x^2-yz+2013}{x}}+\frac{1}{\frac{y^2-zx+2013}{y}}+\frac{1}{\frac{z^2-xy+2013}{z}}\)

\(=\frac{1}{x+3y+3z+\frac{2yz}{x}}+\frac{1}{y+3z+3x+\frac{2xz}{y}}+\frac{1}{z+3x+3y+\frac{2xy}{z}}\)

\(\ge\frac{9}{7\left(x+y+z\right)+2xyz\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}\ge\frac{9}{7\left(x+y+z\right)+2xyz\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}=\)

\(=\frac{9}{7\left(x+y+z\right)+2xyz.\frac{1}{xyz}.\left(x+y+z\right)}=\frac{9}{9\left(x+y+z\right)}=\frac{1}{x+y+z}\)

Ta có đpcm

Oo Bản tình ca ác quỷ oO
16 tháng 9 2016 lúc 20:07

bó tay rùi bạn !!!! ~_~

65756578687696453724756545345363637635754754695622534434

duy anh
Xem chi tiết
Nguyễn Tiến Dũng
Xem chi tiết
Trần Việt Linh
12 tháng 12 2016 lúc 21:50

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

=>đpcm

soyeon_Tiểubàng giải
12 tháng 12 2016 lúc 21:50

2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1

= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1

= xz/1+xz+z + 1/z+1+xz + z/xz+z+1

= xz+1+x/1+xz+x = 1 (đpcm)

Lightning Farron
12 tháng 12 2016 lúc 21:52

Thay xyz=2013 vào ta có:

\(\frac{xyz\cdot x}{xy+xyz\cdot x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)

\(=\frac{xy\cdot xz}{xy\left(xz+z+1\right)}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz+1+z}{xz+z+1}=1\) (Đpcm)

Baekhyun
Xem chi tiết
Phương Trâm
1 tháng 9 2017 lúc 20:24

Ta có:

\(VT=\dfrac{x^2}{x^3-xyz-2013x}+\dfrac{y^2}{y^3-xyz-2013y}+\dfrac{z^2}{z^3-xyz-2013z}\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz-2013.\left(z+y+z\right)}\)

\(VT=\dfrac{\left(x+y+x\right)^2}{x^3+y^3+z^3+3\left[\left(x+y+z\right).\left(xy+yz+xz\right)-xyz\right]}\)

\(VT=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}\)

\(VT=\dfrac{1}{x+y+z}=VP\)

\(\Rightarrow\) Đpcm.

nguyen dang quang
Xem chi tiết
alibaba nguyễn
31 tháng 12 2016 lúc 9:04

\(Q=\frac{2013}{1+x+xy}+\frac{2013}{1+y+yz}+\frac{2013}{1+z+zx}\)

\(=2013\left(\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+xyz+xyzx}\right)\)

\(=2013\left(\frac{1}{1+x+xy}+\frac{x}{1+x+xy}+\frac{xy}{1+xy+x}\right)=2013\)

đặng hoàng ngọc
31 tháng 12 2016 lúc 8:50

ai biết ????