a: =>x^2+y^2+z^2-4x+2y-6z+14=0
=>x^2-4x+4+y^2+2y+1+z^2-6z+9=0
=>(x-2)^2+(y+1)^2+(z-3)^2=0
=>x=2; y=-1; z=3
b: \(\left(x+y+z\right)\cdot\left(xy+yz+xz\right)\)
\(=x^2y+xyz+x^2z+xy^2+y^2z+xyz+xyz+yz^2+xz^2\)
\(=x^2y+xy^2+y^2z+x^2z+yz^2+xz^2+3xyz\)
Theo đề, ta có:
\(x^2y+xy^2+y^2z+x^2z+yz^2+xz^2+2xyz=0\)
\(\Leftrightarrow x^2y+2xyz+yz^2+xy^2+2xzy+xz^2+zx^2-2xyz+zy^2=0\)
\(\Leftrightarrow y\left(x+z\right)^2+x\left(y+z\right)^2+z\left(x+y\right)^2=0\)
=>x=y=z=0
=>x^2013+y^2013+z^2013=(x+y+z)^2013