GIẢI PHƯƠNG TRÌNH
\(6x^4+7x^3-36x^2-7x+6=0\)
Gợi ý: Đây là phương trình có hệ số đối xứng bậc 4
\(6x^4-5x^3-38x^2-5x+6=0\) ( Phương trình có hệ số đối xứng bậc 4)
Giải phương trình trên
\(6x^4-5x^3-38x^2-5x+6=0\)
\(\Leftrightarrow6x^4-12x^3+17x^3-34^2-4x^2+8x-3x+6=0\)
\(\Leftrightarrow6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x^3+18x^2-4x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x^3+18x^2-x^2-3x-x-3=0\right)\)
\(\Leftrightarrow\left(x-2\right)\left[6x^2\left(x+3\right)-x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(6x^2-x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(6x^2-3x+2x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left[6x\left(x-\frac{1}{2}\right)+2\left(x-\frac{1}{2}\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-\frac{1}{2}\right)\left(6x+2\right)=0\)
Giải phương trình
\(6x^4+7x^3-36x^2-7x+6=0\)
6x4+7x3-36x2-7x+6=0
<=> 6x4-2x3+9x3-3x2-33x2+11x-18x+6=0
<=> 2x3(3x-1)+3x2(3x-1)-11x(3x-1)-6(3x-1)=0
<=> (3x-1)(2x3+3x2-11x-6)=0
<=>(3x-1)(2x3-4x2+7x2-14x+3x-6)=0
<=>(3x-1)[2x2(x-2)+7x(x-2)+3(x-2)]=0
<=>(3x-1)(x-2)(2x2+7x+3)=0
<=>(3x-1)(x-2)(2x2+6x+x+3)=0
<=>(3x-1)(x-2)[2x(x+3)+(x+3)]=0
<=>(3x-1)(x-2)(x+3)(2x+1)=0
th1: 3x+1=0 <=> x=\(-\frac{1}{3}\)
th2: x-2=0 <=> x=2
th3: x+3=0 <=> x=-3
th4: 2x+1=0 <=> x=-\(\frac{1}{2}\)
giải phương trình
6x4+7x3-36x2-7x-6=0
giải phương trình
6x4+7x3-36x2-7x-6=0
giải phương trình
6x4+7x3-36x2-7x-6=0
giải phương trình : 6x4 +7x3 -36x2 -7x +6 =0
Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn? Xác định các hệ số \(a\) và \(b\) của phương trình bậc nhất một ẩn đó.
a) \(7x + \dfrac{4}{7} = 0\);
b) \(\dfrac{3}{2}y - 5 = 4\);
c) \(0t + 6 = 0\);
d) \({x^2} + 3 = 0\).
a) Phương trình \(7x + \dfrac{4}{7} = 0\) là phương trình bậc nhất một ẩn vì có dạng \(ax + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(x\) là ẩn số.
Khi đó, \(a = 7;b = \dfrac{4}{7}\).
b) \(\dfrac{3}{2}y - 5 = 4\)
\(\dfrac{3}{2}y - 5 - 4 = 0\)
\(\dfrac{3}{2}y - 9 = 0\)
Phương trình \(\dfrac{3}{2}y - 9 = 0\) là phương trình bậc nhất một ẩn vì có dạng \(ay + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(y\) là ẩn số.
Khi đó, \(a = \dfrac{3}{2};b = - 9\)
c) Phương trình \(0t + 6 = 0\) không là phương trình bậc nhất một ẩn.
Mặc dù phương trình đã cho có dạng \(at + b = 0\) với \(a\) và \(b\) là các hệ số đã cho nhưng \(a = 0\).
d) Phương trình \({x^2} + 3 = 0\) không là phương trình bậc nhất một ẩn vì không có dạng \(ax + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(x\) là ẩn số (do có \({x^2}\)).
gọi p và q là nghiệm của phương trình bậc hai 3x^2+7x+4=0 không giải phương trình hãy thành lập phương trình bậc hai với hệ số bằng số mà các nghiệm của nó là p/q-1 và q/p-1
Giải các phương trình và hệ phương trình sau:
1. Phương trình bậc hai và hệ thức vi ét
a. -3² + 2x + 8=0
b. 5x² - 6x - 1=0
c. -3x² + 14x - 8=0
2. Nhẩm nghiệm của các phương trình bậc hai sau:
a) 5x² + 3x -2=0
b) -18x² + 7x +11=0
c) x² + 1001x + 1000 =0
d) -7x² - 8x + 15=0
e) 2x³ - 4x² - 6x =0
3. Tìm hai số biết tổng và tích của chúng:
a) u + v =14, uv=40
b) u + v = -7, uv=12
c) u + v = -5, uv = -24
3:
a: u+v=14 và uv=40
=>u,v là nghiệm của pt là x^2-14x+40=0
=>x=4 hoặc x=10
=>(u,v)=(4;10) hoặc (u,v)=(10;4)
b: u+v=-7 và uv=12
=>u,v là các nghiệm của pt:
x^2+7x+12=0
=>x=-3 hoặc x=-4
=>(u,v)=(-3;-4) hoặc (u,v)=(-4;-3)
c; u+v=-5 và uv=-24
=>u,v là các nghiệm của phương trình:
x^2+5x-24=0
=>x=-8 hoặc x=3
=>(u,v)=(-8;3) hoặc (u,v)=(3;-8)