Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Holmes Sherlock
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2021 lúc 13:53

5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

nên x=5k; y=3k

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow25k^2-9k^2=4\)

\(\Leftrightarrow k^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)

789 456
25 tháng 4 2024 lúc 13:38

Để giải từng phương trình:

1) \( -\frac{5}{2}x + 1 = -\frac{3}{x} - 2 \)

Đưa về cùng một cơ sở:
\[ -5x + 2 = -6 - 2x \]

\[ -5x + 2x = -6 - 2 \]

\[ -3x = -8 \]

\[ x = \frac{8}{3} \]

2) \( \frac{x}{-2} = \frac{y}{-3} \) và \( x \cdot y = 54 \)

Từ phương trình thứ nhất:
\[ x = -\frac{2y}{3} \]

Thay vào phương trình thứ hai:
\[ (-\frac{2y}{3}) \cdot y = 54 \]

\[ -\frac{2y^2}{3} = 54 \]

\[ y^2 = -\frac{81}{2} \]

Phương trình không có nghiệm thực vì \( y^2 \) không thể là số âm.

3) \( | \frac{2}{5} \cdot \sqrt{x} - \frac{1}{3} | - \frac{2}{5} = \frac{3}{5} \)

Đưa \( \frac{2}{5} \) về chung mẫu số với \( \frac{1}{3} \):
\[ | \frac{6\sqrt{x}}{15} - \frac{5}{15} | = \frac{3}{5} + \frac{2}{5} \]

\[ | \frac{6\sqrt{x} - 5}{15} | = \frac{5}{5} \]

\[ |6\sqrt{x} - 5| = 3 \]

Giải phương trình trên:
\[ 6\sqrt{x} - 5 = 3 \] hoặc \( 6\sqrt{x} - 5 = -3 \)

\[ 6\sqrt{x} = 8 \] hoặc \( 6\sqrt{x} = 2 \)

\[ \sqrt{x} = \frac{4}{3} \] hoặc \( \sqrt{x} = \frac{1}{3} \)

\[ x = \frac{16}{9} \] hoặc \( x = \frac{1}{9} \)

4) \( 3x = 2y \), \( 7y = 5z \), và \( x - y + z = 32 \)

Từ phương trình 1:
\[ x = \frac{2}{3}y \]

Từ phương trình 2:
\[ z = \frac{7}{5}y \]

Thay vào phương trình 3:
\[ \frac{2}{3}y - y + \frac{7}{5}y = 32 \]

\[ \frac{2}{3}y - \frac{3}{3}y + \frac{7}{5}y = 32 \]

\[ (\frac{2}{3} - 1 + \frac{7}{5})y = 32 \]

\[ (\frac{10}{15} - \frac{15}{15} + \frac{21}{15})y = 32 \]

\[ (\frac{10 - 15 + 21}{15})y = 32 \]

\[ (\frac{16}{15})y = 32 \]

\[ y = 20 \]

Thay vào phương trình 1 và 2:
\[ x = \frac{2}{3} \cdot 20 = \frac{40}{3} \]

\[ z = \frac{7}{5} \cdot 20 = 28 \]

5) \( \frac{x}{5} = \frac{y}{3} \) và \( x^2 - y^2 = 4 \)

Từ phương trình 1:
\[ x = \frac{5}{3}y \]

Thay vào phương trình 2:
\[ (\frac{5}{3}y)^2 - y^2 = 4 \]

\[ \frac{25}{9}y^2 - y^2 = 4 \]

\[ (\frac{25}{9} - 1)y^2 = 4 \]

\[ (\frac{25 - 9}{9})y^2 = 4 \]

\[ (\frac{16}{9})y^2 = 4 \]

\[ y^2 = \frac{9}{4} \]

\[ y = \frac{3}{2} \]

Thay vào phương trình 1:
\[ x = \frac{5}{3} \cdot \frac{3}{2} = \frac{5}{2} \]

Vậy, giải hệ phương trình ta được:
1) \( x = \frac{8}{3} \)
2) Phương trình không có nghiệm thực.
3) \( x = \frac{16}{9} \) hoặc \( x = \frac{1}{9} \)
4) \( x = \frac{40}{3} \), \( y = 20 \), \( z = 28 \)
5) \( x = \frac{5}{2} \), \( y = \frac{3}{2} \)

vu huu hung
Xem chi tiết
nguyen tien thien
Xem chi tiết
Nguyễn Đức Minh
Xem chi tiết
missing you =
7 tháng 6 2021 lúc 19:05

vì  x và y biết x và y tỉ lệ nghịch với 3 và 2

=>pt: \(\dfrac{x}{y}=\dfrac{2}{3}\)\(=>y=\dfrac{3}{2}x\)(1)

lại có ổng bình phương 2 số đó là 325

=>pt: \(x^2+y^2=325\left(2\right)\)

thế (1) vào (2)=>\(x^2+\left(\dfrac{3x}{2}\right)^2=325\)

\(< =>x^2+\dfrac{9x^2}{4}=325< =>\dfrac{4x^2+9x^2}{4}=325\)

\(< =>4x^2+9x^2=1300\)

đặt \(x^2=t\left(t\ge0\right)=>4t+9t=1300< =>13t=1300< =>t=100\left(TM\right)\)

=>\(x^2=100=>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)\(=>\left[{}\begin{matrix}y=\dfrac{3}{2}.10\\y=\dfrac{3}{2}\left(-10\right)\end{matrix}\right.< =>\left[{}\begin{matrix}y=15\\y=-15\end{matrix}\right.\)

vậy (x,y)={(10;15)(-10;-15)}

 

I lay my love on you
Xem chi tiết
Không Tên
13 tháng 1 2019 lúc 16:37

\(x^2+y^2=325\)

<=>  \(\left(x+y\right)^2-2xy=325\)

Đặt:  \(x+y=a;\)\(xy=b\)Khi đó ta có:

\(a-b=155\)   (1)

và  \(a^2-2b=325\)

Từ (1) ta có:   \(b=a-155\) thay vào (2) ta được:

\(a^2-2\left(a-155\right)=325\)

giải ra tìm được:  \(\orbr{\begin{cases}a=5\\a=-3\end{cases}}\)  =>  \(\orbr{\begin{cases}a=5;b=-150\\a=-3;b=-158\end{cases}}\)

TH1:  \(\hept{\begin{cases}a=5\\b=-150\end{cases}}\) ,=>  \(\hept{\begin{cases}x+y=5\\xy=-150\end{cases}}\)

\(x^2+y^2=325\) 

<=>   \(\left(x-y\right)^2+2xy=325\)

<=>  \(\left(x-y\right)^2=325-2xy=625\)

<=>  \(\left|x-y\right|=25\)

=>  \(\left|x^3-y^3\right|=\left|\left(x-y\right)\left(x^2+y^2+xy\right)\right|=\left|x-y\right|\left(x^2+y^2+xy\right)=4375\)

TH2: bn tự lm tiếp nhé

Thắng Phạm
Xem chi tiết
Nguyễn Gia Bình
7 tháng 3 2016 lúc 22:28

x=15

y=-10

x3-y3=4375

Đức Hiếu Nguyễn
Xem chi tiết
Khoi My Tran
Xem chi tiết
Nguyễn Huy Tú
15 tháng 12 2016 lúc 12:51

Giải:

Ta có: \(3x=2y\) ( do x, y tỉ lệ nghịch với nhau ) và \(x^2+y^2=325\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=k\)

\(\Rightarrow x=2k,y=3k\)

\(x^2+y^2=325\)

\(\Rightarrow\left(2k\right)^2+\left(3k\right)^2=325\)

\(\Rightarrow2^2.k^2+3^2.k^2=325\)

\(\Rightarrow k^2\left(2^2+3^2\right)=325\)

\(\Rightarrow k^2.13=325\)

\(\Rightarrow k^2=25\)

\(\Rightarrow k=5\) hoặc \(k=-5\)

+) \(k=5\Rightarrow x=10;y=15\)

+) \(k=-5\Rightarrow x=-10;y=-15\)

Vậy cặp số \(\left(x;y\right)\)\(\left(10;15\right);\left(-10;-15\right)\)

Đỗ Thanh Mai
Xem chi tiết