áp dụng hằng đẳng thức để khai triển (2x3 - 5)(4x6 + 25 - 10x3)
Sử dụng hằng đẳng thức khai triển và thu gọn biểu thức sau
(1𝑦/3+3)^3
(𝑦/3+3)^3
(𝑦/3+3⋅3/3)^3
(𝑦+3⋅3/3)^3
(𝑦+9/3)^3
\(\left(\dfrac{1}{3}y+3\right)^3=\dfrac{1}{27}y^3+y^2+9y+27\)
Áp dụng hằng đẳng thức khai triển biểu thức sau:
a, \(\left(3x^2-2y^3\right)^2\)
b, \(\left(-2x^2-3\right)^2\)
a) \(\left(3x^2-2y^3\right)^2\)
\(=\left(3x^2\right)^2-2\cdot3x^2\cdot2y^3+\left(2y^3\right)^2\)
\(=9x^4-12x^2y^3+4y^6\)
b) \(\left(-2x^2-3\right)^2\)
\(=\left(-2x^2\right)^2-2\cdot\left(-2x^2\right)\cdot3+3^2\)
\(=4x^4+12x^2+9\)
Sử dụng hằng đẳng thức khai triển và thu gọn biểu thức sau (1phần 3y+3)^3
\(\left(\dfrac{1}{3y+3}\right)^3=\dfrac{1}{\left(3y+3\right)^3}=\dfrac{1}{27y^3+81y^2+81y+27}\)
\(\left(\dfrac{1}{3y+3}\right)^3=\dfrac{1^3}{\left(3y+3\right)^3}=\dfrac{1}{27\left(y^3+3y^2+3y+1\right)}\)
\(\left(\dfrac{1}{3}y+3\right)^3=\dfrac{1}{27}y^3+y^2+9y+27\)
Áp dụng hằng đẳng thức khai triển biểu thức sau:
a, \(\left(2x^2-1\right)^2\)
b, \(\left(\dfrac{1}{2}x+3y^2\right)^2\)
a) \(\left(2x^2-1\right)^2=\left(2x^2\right)^2-2.2x^2.1+1^2\)
\(=4x^4-4x^2+1\).
b) \(\left(\frac{1}{2}x+3y^2\right)^2=\left(\frac{1}{2}x\right)^2+2.\frac{1}{2}x.3y^2+\left(3y^2\right)^2\)
\(=\frac{1}{4}x^2+3y^2x+9y^4\)
Chúc bn hc tốt!
vận dụng hằng đẳng thức để khai triển và rút gọn
a) \(12\left(2x-5\right)^2-3\left(1+4x\right)\left(4x-1\right)\)
a) \(12\left(2x-5\right)^2-3\left(1+4x\right)\left(4x-1\right)\)
\(=12\left[\left(2x\right)^2-2.2x.5+5^2\right]-3\left(4x+1\right)\left(4x-1\right)\)
\(=12\left(4x^2-20x+25\right)-3\left[\left(4x\right)^2-1\right]\)
\(=48x^2-240x+300-3\left(16x^2-1\right)\)
\(=48x^2-240x+300-48x^2+3\)
\(=-240x+303\)
áp dụng tính chất hằng đẳng thức để tính:
\(A=\frac{25^3+15^3}{4}-25\cdot15\)
A = (25+15).(25^2-15.25+15^2)/4 - 25.15
= 40.475/4 - 375 = 10.475 - 375 = 4750 - 375 = 4375
k mk nha bạn ơi
Sử dụng hằng đẳng thức khai triển và thu gọn biểu thức sau. A/. (x+y)^3-(x-y)^3
a: Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)
\(=6x^2y+2y^3\)
\(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left(x+y-x+y\right)^3+3\left(x+y\right)\left(x-y\right)\left(x+y-x+y\right)\)
\(=8y^3+6y\left(x^2-y^2\right)\)
\(=8y^3+6x^2y-6y^3\)
\(=2y^3+6x^2y\)
khai triển hằng đẳng thức(a+b+c)^3
áp dụng tính:a,(x+y-2)^2
b,(2x+3y+5)^2
c,(3x-y+2)^2
Dùng hằng đẳng thức để khai triển và thu gọn các biểu thức sau:
a) (3x+5)2
b) (6x2+\(\dfrac{1}{3}\))2
c) (5x-4y)2
d) (5x-3)(5x+3)
a) $(3x+5)^2\\=(3x)^2+2.3x.5+5^2\\=9x^2+30x+25$
b) $(6x+\dfrac{1}{3})^2\\=(6x)^2+2.6x.\dfrac{1}{3}+(\dfrac{1}{3})^2\\=36x^2+4x+\dfrac{1}{9}$
c) $(5x-4y)^2\\=(5x)^2-2.5x.4y+(4y)^2\\=25x^2-40xy+16y^2$
d) $(5x-3)(5x+3)\\=(5x)^2-(3)^2\\=25x^2-9$