Cho hình vuông \(MNPQ\). Chứng minh \(MNPQ\) vừa là hình chữ nhật vừa là hình thoi.
Cho tứ giác ABCD. gọi M,N,P,Q lần lượt là trung điểm của AB,AC,DC,DB. Chứng minh tứ giác MNPQ là hình bình hành. Tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình thoi, hình chữ nhật, hình vuông
Cho hình bình hành ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA
a) Chứng minh tứ giác MNPQ là hình bình hành
b) Hình bình hành ABCD cần thêm điều kiện gì để MNPQ là hình chữ nhật, hình thoi, hình vuông?
c) Gọi O là giao điểm của AC,BD.Chứng minh: M,O,P thẳng hàng
d) Chứng minh : AC, BD, QN đồng qui
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
Cho hình bình hành ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA
a) Chứng minh tứ giác MNPQ là hình bình hành
b) Hình bình hành ABCD cần thêm điều kiện gì để MNPQ là hình chữ nhật, hình thoi, hình vuông?(chỉ cần câu b)
c) Gọi O là giao điểm của AC,BD.Chứng minh: M,O,P thẳng hàng
d) Chứng minh : AC, BD, QN đồng qui
Cho hình chữ nhật ABCD Gọi MNPQ lần lượt là trung điểm của AB, BC, CD da Chứng minh rằng mnpq là hình thoi không dùng đường trung bình helppppp
Xét Δ AQN và Δ MBN có :
\(\widehat{QAM}=\widehat{MBN}=90^o\)
\(AM=BM\) (M là trung điểm AB)
\(AQ=BN\) (Q;N là trung điểm AD;BC và AD=BC)
⇒ Δ AQN và Δ MBN (cạnh, góc, cạnh)
\(\Rightarrow QM=MN\left(1\right)\)
Chứng minh tương tự :
- Δ AQN và Δ QDP (cạnh, góc, cạnh) \(\Rightarrow QM=QP\left(2\right)\)
- Δ PNC và Δ QDP (cạnh, góc, cạnh) \(\Rightarrow PN=QP\left(3\right)\)
- Δ PNC và Δ MBN (cạnh, góc, cạnh) \(\Rightarrow PN=MN\left(4\right)\)
\(\left(1\right);\left(2\right);\left(3\right);\left(4\right)\Rightarrow QM=MN=PN=QP\)
⇒ Tứ giác MNQP là hình thoi (dpcm)
cho điểm I nằm trong tam giác ABC. Gọi M,N,P,Q lần lượt là trung điểm của IB,IC,AC,AB. chứng minh tứ giác a)MnPQ là hình bình hành
b)I chuyển động trên đường nào để MNPQ là hình chữ nhật
C)xác đinh vị trí điểm I đe MNPQ là hình thoi, hình vuông
a: Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD và MQ=BD/2
Xét ΔCBD có CP/CD=CN/CB
nên NP//BD và NP=BD/2
=>MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: KHi ABCD là hình thoi thì AC vuông góc với BD
=>MQ vuông góc với MN
=>MNPQ là hình chữ nhật
c: khi ABCD là hình chữ nhật thì AC=BD
=>MN=MQ
=>MNPQ là hình thoi
cho tứ giác abcd có mnpq là trung điển ab,bc,cd,da.
a,chứng minh rằng mnpq là hình bình hành
b.thứ giác abcd cần có thêm điều kiện gì để mnpq là hình chữ nhật, hình thoi
ke db va ac
a) xét tam giác abd . có
aq = qd
am = mb
\(\Rightarrow\) qm là đường trung bình của tam giác abd
\(\Rightarrow\) qm song song db (1)
tương tự với tam giác cdb \(\Rightarrow\)np là đường trung bình của tam giác cdb
\(\Rightarrow\)np song song bd (2)
tu 1 va 2 \(\Rightarrow\)qm song song np (*)
đối với tam giác abc và tam giác adc cũng làm tương tự bạn nhé
b) mình nghĩ cần phải thêm điều kiện là ab , bc , cđ , da đều bằng nhau
Cho hình chữ nhật ABCD. Gọi M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA.
a) CMR: Tứ giác MNPQ là hình thoi và bằng nửa diện tích hình chữ nhật ABCD.
b) Khi ABCD là hình vuông thì MNPQ là hình gì?
a: Xét ΔABD có
M là tđiểm của AB
Q là tđiểm của AD
Do đó:MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là tđiểm của BC
P là tđiểm của CD
Do đó: NP là đường trung bình
=>NP=BD/2 và NP//BD(2)
Xét ΔABC có
M là tđiểm của AB
N là tđiểm của BC
Do đó: MN là đường trung bình
=>MN=AC/2=BD/2(3)
Từ (1) và (3) suy ra MN=MQ
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
mà MN=MQ
nên MQPN là hình thoi
Cho tứ giác EFGH. Gọi M, N, P, Q lần lượt là trung điểm các cạnh EF, FG, GH, HE.
a) Chứng minh MNPQ là hình bình hành
b) Nếu EFGH là hình thoi thì MNPQ là hình gì? Vì sao?
c) Nếu EFGH là hình chữ nhật thì MNPQ là hình gì? Vì sao?