Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
erosennin
Xem chi tiết
Witch Rose
Xem chi tiết
alibaba nguyễn
11 tháng 8 2018 lúc 12:42

Đặt √x = a > 0 thì có

P.2.a(a + 1) - (a - 2)(a - 3) = 0

<=> (2P - 1)x2 + (2P + 5)x - 6 = 0

Để có nghiệm thì: 

∆ = (2P + 5)2 - 4.6.(2P - 1) >= 0

Xong rồi đó. Tìm được P >= đó bé

Shin
Xem chi tiết
Tuấn
4 tháng 12 2016 lúc 10:01

chtt đi bạn

Kinder
Xem chi tiết
Akai Haruma
31 tháng 12 2020 lúc 14:31

a) Đặt $\sqrt{x+1}=a; \sqrt{9-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b$ với $a,b\geq 0$ và $a^2+b^2=10$Ta có:

$f^2(a,b)=(a+b)^2=a^2+b^2+2ab=10+2ab\geq 10$ do $ab\geq 0$

$\Rightarrow f(a,b)\geq \sqrt{10}$ hay $f_{\min}=\sqrt{10}$

Mặt khác: $f^2(a,b)=(a+b)^2\leq 2(a^2+b^2)=20$ (theo BĐT AM-GM)

$\Rightarrow f(a,b)\leq \sqrt{20}=2\sqrt{5}$ hay $f_{\max}=2\sqrt{5}$

b) 

Đặt $\sqrt{x}=a; \sqrt{2-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b+ab$ với $a,b\geq 0$ và $a^2+b^2=2$. Ta có:

$f(a,b)=\sqrt{(a+b)^2}+ab=\sqrt{a^2+b^2+2ab}+ab=\sqrt{2+2ab}+ab\geq \sqrt{2}$ do $ab\geq 0$

Vậy $f_{\min}=\sqrt{2}$

Lại có, theo BĐT AM-GM:

$f(a,b)=\sqrt{2+2ab}+ab\leq \sqrt{2+a^2+b^2}+\frac{a^2+b^2}{2}=\sqrt{2+2}+\frac{2}{2}=3$

Vậy $f_{\max}=3$

 

Akai Haruma
31 tháng 12 2020 lúc 14:34

c) Đặt $\sqrt{8-x^2}=a$ thì bài toán trở thành tìm max, min của:

$f(x,a)=x+a+ax$ với $x,a\geq 0$ và $x^2+a^2=8$. Bài này chuyển về y hệt  như phần b. 

$f_{\min}=2\sqrt{2}$

$f_{\max}=8$

d) Tương tự:

$f_{\min}=2$ khi $x=\pm 2$

$f_{\max}=2+2\sqrt{2}$ khi $x=0$

tống thị quỳnh
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Như Hùng
Xem chi tiết
phamthiminhanh
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
11 tháng 6 2021 lúc 15:08

Chứng minh BĐT phần a có dấu "=" nhé bạn!

a) Ta có : \(\sqrt{a^2}+\sqrt{b^2}\ge\sqrt{\left(a+b\right)^2}\)

\(\Leftrightarrow a^2+b^2+2\sqrt{a^2b^2}\ge\left(a+b\right)^2\)

\(\Leftrightarrow2\left|ab\right|\ge2ab\) ( luôn đúng )

Dấu "=" xảy ra khi \(ab\ge0\)

b) Áp dụng BĐT ở câu a ta có :

\(A=\sqrt{\left(2021-x\right)^2}+\sqrt{\left(2022-x\right)^2}\)

\(=\sqrt{\left(2021-x\right)^2}+\sqrt{\left(x-2022\right)^2}\)

\(\ge\sqrt{\left(2021-x+x-2022\right)^2}=1\)

Dấu "= xảy ra \(\Leftrightarrow2021\le x\le2022\)

Vậy Min \(A=1\) khi \(\Leftrightarrow2021\le x\le2022\)

Kinder
Xem chi tiết
Yeutoanhoc
11 tháng 6 2021 lúc 7:51

`sqrt{x-2}-2>=sqrt{2x-5}-sqrt{x+1}`

`đk:x>=5/2`

`bpt<=>\sqrt{x-2}+\sqrt{x+1}>=\sqrt{2x-5}+2`

`<=>x-2+x+1+2\sqrt{(x-2)(x+1)}>=2x-5+4+4\sqrt{2x-5}`

`<=>2x-1+2\sqrt{(x-2)(x+1)}>=2x-1+4\sqrt{2x-5}`

`<=>2\sqrt{(x-2)(x+1)}>=4\sqrt{2x-5}`

`<=>sqrt{x^2-x-2}>=2sqrt{2x-5}`

`<=>x^2-x-2>=4(2x-5)`

`<=>x^2-x-2>=8x-20`

`<=>x^2-9x+18>=0`

`<=>(x-3)(x-6)>=0`

`<=>` \(\left[ \begin{array}{l}x \ge 6\\x \le 3\end{array} \right.\) 

Kết hợp đkxđ:

`=>` \(\left[ \begin{array}{l}x \ge 6\\\dfrac52 \le x \le 3\end{array} \right.\)