Chứng minh BĐT phần a có dấu "=" nhé bạn!
a) Ta có : \(\sqrt{a^2}+\sqrt{b^2}\ge\sqrt{\left(a+b\right)^2}\)
\(\Leftrightarrow a^2+b^2+2\sqrt{a^2b^2}\ge\left(a+b\right)^2\)
\(\Leftrightarrow2\left|ab\right|\ge2ab\) ( luôn đúng )
Dấu "=" xảy ra khi \(ab\ge0\)
b) Áp dụng BĐT ở câu a ta có :
\(A=\sqrt{\left(2021-x\right)^2}+\sqrt{\left(2022-x\right)^2}\)
\(=\sqrt{\left(2021-x\right)^2}+\sqrt{\left(x-2022\right)^2}\)
\(\ge\sqrt{\left(2021-x+x-2022\right)^2}=1\)
Dấu "= xảy ra \(\Leftrightarrow2021\le x\le2022\)
Vậy Min \(A=1\) khi \(\Leftrightarrow2021\le x\le2022\)