Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Linh Lê
Xem chi tiết
HT.Phong (9A5)
29 tháng 7 2023 lúc 11:11

a) \(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(P=\left(\dfrac{x+2}{\left(\sqrt{x}\right)^3-1^3}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)

\(P=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)\(P=\left(\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)

\(P=\dfrac{2}{x+\sqrt{x}+1}\)

b) Mà với \(x\ge0\) và \(x\ne1\) thì 

\(x+\sqrt{x}+1\ge0\) và \(2>0\) nên \(P>0\)

Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 11:08

a: \(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2}=\dfrac{2}{x+\sqrt{x}+1}\)

b: x+căn x+1+1>=1>0

2>0

=>P>0 với mọi x thỏa mãn x>=0 và x<>1

Lê Kiều Trinh
Xem chi tiết
Lấp La Lấp Lánh
7 tháng 10 2021 lúc 18:10

a) \(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)

\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)

\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Kết hợp đk:

\(\Rightarrow x\in\left\{0\right\}\)

d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)

 

Nguyễn Hoàng Minh
7 tháng 10 2021 lúc 18:11

\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}\in Z\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow2⋮\sqrt{x}+1\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}+1\in\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}\in\left\{0;1\right\}\\ \Leftrightarrow x\in\left\{0;1\right\}\)

\(d,P=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Có \(\dfrac{2}{\sqrt{x}+1}>0\left(2>0;\sqrt{x}+1>0\right)\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}< 1\Leftrightarrow P< 1\)

\(e,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Có \(\sqrt{x}+1\ge1\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\le2\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)

\(P_{min}=-1\Leftrightarrow x=0\)

 

Nguyễn Thị Thuỳ Dương
Xem chi tiết
missing you =
18 tháng 7 2021 lúc 16:33

\(=>M=\left(\dfrac{\sqrt{x}+1+\sqrt{x}}{x-1}\right).\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)

\(M=\dfrac{2\sqrt{x}+1}{x-1}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 22:58

Ta có: \(M=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right)\cdot\dfrac{x-\sqrt{x}}{2\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

Hải Yến Lê
Xem chi tiết
Minh Nhân
3 tháng 7 2021 lúc 21:04

\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}}{x-\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}+1-3}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

Kiêm Hùng
3 tháng 7 2021 lúc 21:05

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3}{\sqrt{x}-1}\\ =\dfrac{\sqrt{x}+1-3}{\sqrt{x}-1}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x-1}\right)}-\dfrac{3\sqrt{x}}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) \(=\dfrac{x+\sqrt{x}-3\sqrt{x}}{\sqrt{x}.\left(\sqrt{x-1}\right)}\) \(=\dfrac{x-2\sqrt{x}}{\sqrt{x}.\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

Phùng Minh Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2021 lúc 21:52

Sửa đề: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

Ta có: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{2}{x-1}\)

Nguyễn Thị Thuỳ Dương
Xem chi tiết
missing you =
18 tháng 7 2021 lúc 16:31

\(=>M=\dfrac{2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}-1\right)-5+\sqrt{x}}{x-1}\)

\(M=\dfrac{2\left(\sqrt{x}+1+\sqrt{x}-1\right)-5+\sqrt{x}}{x-1}=\dfrac{4\sqrt{x}-5+\sqrt{x}}{x-1}\)

\(M=\dfrac{5\sqrt{x}-5}{x-1}=\dfrac{5\left(\sqrt{x}-1\right)}{x-1}=\dfrac{5}{\sqrt{x}+1}\)

An Thy
18 tháng 7 2021 lúc 16:32

\(M=\dfrac{2}{\sqrt{x}-1}+\dfrac{2}{\sqrt{x}+1}-\dfrac{5-\sqrt{x}}{x-1}\)

\(=\dfrac{2}{\sqrt{x}-1}+\dfrac{2}{\sqrt{x}+1}+\dfrac{\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}-1\right)+\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{5\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{5\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{5}{\sqrt{x}+1}\)

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:03

Ta có: \(M=\dfrac{2}{\sqrt{x}-1}+\dfrac{2}{\sqrt{x}+1}-\dfrac{5-\sqrt{x}}{x-1}\)

\(=\dfrac{2\sqrt{x}+2+2\sqrt{x}-2-5+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{5\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{5}{\sqrt{x}+1}\)

Nguyễn Thị Thuỳ Dương
Xem chi tiết
Trên con đường thành côn...
17 tháng 7 2021 lúc 15:18

undefined

Nhan Thanh
17 tháng 7 2021 lúc 15:56

 Ta có \(P=\left(\dfrac{1}{x+\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2}{\sqrt{x}+1}\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2}{\sqrt{x}+1}\)

\(=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{2}\)

\(=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\) 

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 0:09

Ta có: \(P=\left(\dfrac{1}{x+\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2}{\sqrt{x}+1}\)

\(=\dfrac{x+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\)

\(=\dfrac{x+1}{2\sqrt{x}}\)

Hải Yến Lê
Xem chi tiết
Nguyễn Ngọc Lộc
24 tháng 6 2021 lúc 20:43

Ta có : \(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{x+\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\left(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}-1}\right)=\dfrac{1}{\sqrt{x}}\)

๖ۣۜDũ๖ۣۜN๖ۣۜG
24 tháng 6 2021 lúc 20:42

B = \(\left[\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right].\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}}\)

Yeutoanhoc
24 tháng 6 2021 lúc 20:43

`(sqrtx/(sqrtx+1)-1/(x+sqrtx)).(1/(sqrtx+1)+2/(x-1)(x>0,x ne 1)`

`=((x-1))/(x+sqrtx)).((sqrtx-1+2)/(x-1))`

`=(x-1)/(x+sqrtx)*(sqrtx+1)/(x-1)`

`=(x-1)/(sqrtx(sqrtx+1))*1/(sqrtx-1)`

`=1/sqrtx`

Lê Kiều Trinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2021 lúc 20:09

a: \(P=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2\sqrt{x}}{x\sqrt{x}-1}\)

Ngọc May
13 tháng 3 2022 lúc 19:29

a, Với x ≥ 0, x ≠1 
P= [ \(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\)] : \(\dfrac{\sqrt{x}-1}{2}\)  = 
\(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)]
\(\dfrac{\sqrt{x}-1}{2}\)
P= \(\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\):\(\dfrac{\sqrt{x}-1}{2}\)
P= \(\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{2}\)
P= \(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
P= \(\dfrac{2}{x+\sqrt{x}+1}\)
b, Ta có : \(x+\sqrt{x}+1=\left(\sqrt{x}\right)^2+2.\dfrac{1}{2}.\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}\)= (\(\sqrt{x}+\dfrac{1}{2}\))2 +\(\dfrac{3}{4}\) >\(0\)  ∀ x
=> \(\dfrac{3}{x+\sqrt{x}+1}>0\) ∀ x

=> P > 0 với mọi x ≥ 0 và x ≠ 1