Cho ∆abc vuông tại a.có AB=3cm AC=4cm. có đường cao AE A)Chứng ming ∆abc đồng dạng với ∆eac
B)tính ae
Nhớ vẽ hình nhé:))
Cho tam giác ABC vuông tại A với AB = 3cm AC= 4cm vẽ đường cao AE. a) Chứng minh rằng AABC đồng dạng với AEBA. b) Tia phân giác của góc ABC cắt AC tại F. Tính BF
a: Xét ΔABC vuông tại A và ΔEBA vuông tại E có
góc B chung
=>ΔABC đồng dạng vơi ΔEBA
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
BF là phân giác
=>AF/AB=CF/BC
=>AF/3=CF/5=4/8=0,5
=>AF=1,5cm
\(BF=\sqrt{1,5^2+3^2}=\dfrac{3\sqrt{5}}{2}\left(cm\right)\)
cho tam giác ABC vuông tại A.Có AB=3cm,AC=4cm,vẽ đường cao AH.
a) Chứng minh rằng tam giác BAC đồng dạng tam giác AHC
b)Vẽ đường thẳng vuông góc với AC tại C cắt AH kéo dài tại D. Chứng minh rằng tam giác BAC đồng dạng tam giác ACD và AC^2=AB.CD
c)chứng minh tứ giác ABCD là hình thang vuông. Tính diện tích ABCD
d)Qua H kẻ đường thẳng vuông góc với AC cắt AC tại E và cắt BD tại F .So sánh HE và HF?
Cho tam giác ABC vuông tại A, có AB= 3cm, AC= 4cm. Kẻ đường phân giác BD của góc ABC ( D thuộc AC ).
a) Tính BC,AD.
b) Vẽ đường cao AH, chứng minh tam giác ABC đồng dạng với tam giác HBA.
c) chứng minh: AB^2= BC.HB
GIẢI GIÚP MIK VỚI!!!
a. áp dụng định lý pytago vào tam giác vuông ABC, ta có:
BC2=AB2+AC2
BC2= 32+42
BC2= 9+16
BC2=25
BC= 5 (cm)
Vì BD là phân giác
=> \(\dfrac{AD}{CD}\)=\(\dfrac{AB}{BC}\)
gọi AD là x, CD là 4-x
=> \(\dfrac{x}{4-x}\)=\(\dfrac{3}{5}\)
5x= 3.(4-x)
5x= 12-3x
5x+3x=12
8x=12
x= 1,5 (cm)
Vậy AD= 1,5 cm
b. Xét tam giác ABC và tam giác HBA:
góc A= góc H= 90o
góc B chung
=> tam giác ABC ~ tam giác HBA
c. Vì tam giác ABC ~ tam giác HBA (cmt)
=> \(\dfrac{AB}{HB}\)=\(\dfrac{BC}{AB}\)
=> AB2=BC.HB
Cho tam giác ABC vuông tại A ( AB<AC), vẽ đường cao AH ( H thuộc BC). a) chứng minh tam giác ABC đồng dạng với tam giác HBA b) cho AB = 3cm ; AC = 4cm. tính BC, AH c) trên tia HC, lấy HD = HA. từ D vẽ đường thẳng song song với AH cắt AC tại E. chứng minh CE.CA=CD.CB d) chứng minh tam giác ABE cân
a)
Xét \(\Delta ABC\) và \(\Delta HBA\)có:
\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)
\(\widehat{ABC}\)là góc chung (giả thiết)
Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)
b)
\(\Delta ABC\)vuông tại A
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
\(\Delta ABC\)đồng dạng với \(\Delta HBA\)
\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)
c) Ta có
\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)
Xét \(\Delta ABC\)và \(\Delta DEC\)có
\(\widehat{BAC}=\widehat{CDE}=90^o\)
\(\widehat{ACB}\)là góc chung (giả thiết)
Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)
\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)
d)
\(\Delta AHB\)vuông tại H
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)
Ta có; \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)
Ta lại có:
\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)
\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)
Ta lại có:
\(AE=AC-EC=4-1=3\left(cm\right)\)
mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A
Vậy \(\Delta ABE\)cân tại A
Hình vẽ ko được chính xác bạn thông cảm
Cho tam giác ABC vuông tại A đường cao AH, AB=3cm, AC=4cm. a)Chứng minh HBA đồng dạng ABC. b)Tính BC, AH, BH. c)Chứng minh AH=HA.HC
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Ta có: ΔHBA\(\sim\)ΔABC(cmt)
nên \(\dfrac{BH}{BA}=\dfrac{BA}{BC}=\dfrac{AH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{BH}{3}=\dfrac{3}{5}=\dfrac{AH}{4}\)
Suy ra: BH=1,8cm; AH=2,4cm
Cho tam giác ABC vuông tại A AB=3cm Ac=4cm vẽ đường cao AE phân giác góc ABC cắt AC tại F tính BF
Cho tam giác vuông ABC vuông tại A có AB = 3cm, AC = 4cm. Kẻ đường cao AH.
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA
b) Tính độ dài các cạnh BC, AH
c) Tính tỉ số diện tích của hai tam giác AHB và CHA.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: BC=căn 3^2+4^2=5cm
AH=3*4/5=2,4cm
c: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
=>S AHB/S CHA=(AB/CA)^2=9/16
Cho ∆ABC vuông tại A đường cao AD ; AB =3cm ,AC = 4cm a CM ∆DBA đồng dạng ∆ABC b. Tính BC,AD,BD
a)Xét \(\Delta DBA\) và \(\Delta ABC\) có:
\(\widehat{B}\) chung
\(\widehat{BDA}=\widehat{BAC}\)
=> \(\Delta DBA\) đồng dạng với \(\Delta ABC\)
b) Xét \(\Delta ABC\) vuông tại A có:
\(BC^2=AB^2+AC^2\)
\(BC^2=9+16\)
\(BC^2=25\)
BC= 5 cm
Có: \(\dfrac{AD}{AC}=\dfrac{BD}{AB}=\dfrac{AB}{BC}\) ( \(\Delta DBA\) đồng dạng với \(\Delta ABC\) )
\(\Leftrightarrow\dfrac{AD}{4}=\dfrac{BD}{3}=\dfrac{3}{5}\)
\(\Rightarrow AD=4.\dfrac{3}{5}=\dfrac{12}{5}=2,4\) cm
\(BD=3.\dfrac{3}{5}=\dfrac{9}{5}=1,6\) cm