Tính:
\(\sqrt{10+2\sqrt{17-4\sqrt{9+4\sqrt{5}}}}\)
Tính: \(\frac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2-\sqrt{2}}\)
Ta có:
\(A=\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}\)
\(\Leftrightarrow A^2=10-2\sqrt{25-17}=10-4\sqrt{2}\)
\(\Leftrightarrow A=\sqrt{10-4\sqrt{2}}\)
Ta lại có:
\(B=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)
\(\Leftrightarrow B^2=6-2\sqrt{9-5}=2\)
\(\Leftrightarrow B=\sqrt{2}\)
Thế vô biểu thức ban đầu ta được
\(\frac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2-\sqrt{2}}\)
\(=\frac{\sqrt{10-4\sqrt{2}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{2}+2-\sqrt{2}}=\frac{4}{2}=2\)
ta có :
\(A=\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}\)
\(\Leftrightarrow A^2=10-2\sqrt{25-17=10-4\sqrt{2}}\)
\(\Leftrightarrow A=\sqrt{10-4\sqrt{2}}\)
ta lại có :
\(B=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)
\(\Leftrightarrow B^2=6-2\sqrt{9-5}=2\)
\(\Leftrightarrow B=\sqrt{2}\)
the vo bieu thuc ban dau ta duoc
\(\frac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2=\sqrt{2}}\)
\(=\frac{\sqrt{10-4\sqrt{2}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{2}+2-\sqrt{2}}=\frac{4}{2}=2\)
Bài 1: Tính giá trị biểu thức:
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(\sqrt{10+2\sqrt{17-4\sqrt{9+4\sqrt{5}}}}\)
\(\sqrt{7-2\sqrt{2+\sqrt{50+\sqrt{18-\sqrt{128}}}}}\)
\(\sqrt{10+2\sqrt{17-4\sqrt{9+4\sqrt{5}}}}\)
\(=\sqrt{10+2\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}}\)
\(=\sqrt{10+2\sqrt{17-4\left(\sqrt{5}+2\right)}}\)
\(=\sqrt{10+2\sqrt{9-4\sqrt{5}}}\)
\(=\sqrt{10+2\sqrt{\left(\sqrt{5}-2\right)^2}}\)
\(=\sqrt{10+2\left(\sqrt{5}-2\right)}\)
\(=\sqrt{6+2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\sqrt{5}+1\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)
\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}\)
\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{43+30\sqrt{2}}\)
\(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)
Thực hiện phép tính :
A = \(\frac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2-\sqrt{2}}\)
Tính
1/ \(\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)
2/ \(\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
3/ \(\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}\)
4/ \(\sqrt{27+10\sqrt{2}}:\dfrac{1}{\sqrt{\left(\sqrt{2}-5\right)^2}}\)
\(1.\sqrt{17-4\sqrt{9+4\sqrt{5}}}=\sqrt{17-4\sqrt{5+2.2\sqrt{5}+4}}=\sqrt{17-4\left(\sqrt{5}+2\right)}=\sqrt{5-2.2\sqrt{5}+4}=\sqrt{5}-2\)
\(2.\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{17-6\sqrt{2+\sqrt{8+2.2\sqrt{2}+1}}}=\sqrt{17-6\sqrt{2+2\sqrt{2}+1}}=\sqrt{17-6\left(\sqrt{2}+1\right)}=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)\(3.\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}=\sqrt{3+\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}}=\sqrt{3+\sqrt{3-2\sqrt{3}+1}}=\sqrt{2+\sqrt{3}}=\dfrac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)
\(4.\sqrt{27+10\sqrt{2}}:\dfrac{1}{\sqrt{\left(\sqrt{2}-5\right)^2}}=\sqrt{25+2.5\sqrt{2}+2}.\left(5-\sqrt{2}\right)=\left(5+\sqrt{2}\right)\left(5-\sqrt{2}\right)=5-2=3\)
Bài 3: Thực hiện các phép tính sau:
a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
c) \(\sqrt{6-4\sqrt{2}}+\)\(\sqrt{22-12\sqrt{2}}\)
hộ mk với
a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(=2\sqrt{5}+2+\sqrt{5}-2\)
\(=3\sqrt{5}\)
b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
\(=3-2\sqrt{2}+2\sqrt{2}-1\)
=2
c) \(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)
\(=2-\sqrt{2}+3\sqrt{2}-2\)
\(=2\sqrt{2}\)
tính
\(2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)
`2+\sqrt{17-4sqrt{9+4sqrt5}}`
`=2+sqrt{17-4sqrt{4+2.2sqrt5+5}}`
`=2+sqrt{17-4sqrt{(sqrt5+2)^2}}`
`=2+sqrt{17-4(sqrt5+2)}`
`=2+sqrt{9-4sqrt5}`
`=2+sqrt{5-2.2sqrt5+4}`
`=2+sqrt{(sqrt5-2)^2}`
`=2+sqrt5-2=sqrt5`
\(\sqrt{10+2\sqrt{17-4\sqrt{9+4\sqrt{5}}}}\)
\(\sqrt{10+2\sqrt{17-4\left(2+\sqrt{5}\right)}}\)=\(\sqrt{10+2\sqrt{17-8-4\sqrt{5}}}=\sqrt{10+2\sqrt{9-4\sqrt{5}}}\)
=\(\sqrt{10+2\left(\sqrt{5}-2\right)}=\sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)
Thực hiện phép tính
a ) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}\)
b ) \(\sqrt{21+8\sqrt{5}}+\sqrt{21-8\sqrt{5}}\)
c ) \(\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)
d ) \(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
a, \(\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}=\left(-\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}=-1\)
b.\(\sqrt{16+2\sqrt{16.5}+5}+\sqrt{16-2\sqrt{16.5}+5}=\sqrt{\left(4+\sqrt{5}\right)^2}+\sqrt{\left(4-\sqrt{5}\right)^2}=8\)
d,dat \(A=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\Rightarrow A^2=4+\sqrt{7}+2\sqrt{16-7}+4-\sqrt{7}\)\(A^2=8+6=14\Rightarrow A=\sqrt{14}\)
C,\(\sqrt{17-4\sqrt{\left(2+\sqrt{5}\right)^2}}=\sqrt{17-4\left(2+\sqrt{5}\right)}=\sqrt{17-8-4\sqrt{5}}=\sqrt{9-4\sqrt{5}}=\sqrt{5}-2\)
Bài 1: Chứng minh:
a) \(\sqrt{9+\sqrt{17}}-\sqrt{9-\sqrt{17}}-\sqrt{2}=0\)
b) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=\sqrt{5}+1\)
c) \(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}< 24\)
d) \(\sqrt{6+\sqrt{6+\sqrt{6+,,,+\sqrt{6}}}}=3\)